Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.11.1157

Anti-inflammatory Effect of Flavonoids Kaempferol and Biochanin A-enriched Extract of Barnyard Millet (Echinochloa crus-galli var. frumentacea) Grains in LPS-stimulated RAW264.7 Cells  

Lee, Ji Young (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Jun, Do Youn (Institute of Life Science and Biotechnology, Kyungpook National University)
Yoon, Young Ho (Functional Cereal Crop research Division. Department of Functional Crop, NICS, RDA)
Ko, Jee Youn (Functional Cereal Crop research Division. Department of Functional Crop, NICS, RDA)
Woo, Koan Sik (Functional Cereal Crop research Division. Department of Functional Crop, NICS, RDA)
Woo, Mi Hee (Department of Pharmacology, College of Pharmacology, Daegu Catholic University)
Kim, Young Ho (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.24, no.11, 2014 , pp. 1157-1167 More about this Journal
Abstract
In order to compare the anti-inflammatory effects of five selected cereal grains-proso millet, hwanggeumchal sorghum, foxtail millet, barnyard millet, and adlay-the inhibitory activities of 80% ethanol (EtOH) extracts obtained from the individual grains on lipopolysaccharide (LPS)-induced nitric oxide (NO) generation were investigated in RAW264.7 cells. The EtOH extract of barnyard millet (Echinochloa crus-galli var. frumentacea) grains exhibited more potent anti-inflammatory activity than that of the other grains. When the EtOH extract of barnyard millet grains was sequentially fractionated with n-hexane, methylene chloride (MC), ethyl acetate (EtOAc), and n-butanol, the majority of the anti-inflammatory activity was detected in the MC fraction, followed by the EtOAc fraction. Pretreatment with the MC fraction caused downregulation of the expression levels of iNOS- and COX-2-specific transcripts and proteins, as well as proinflammatory cytokine gene transcripts (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) in LPS-stimulated RAW264.7 cells. Additionally, the MC fraction could suppress not only the LPS-induced nuclear translocation of cytosolic NF-kB, but also the LPS-induced activation of MAPKs, such as ERK, JNK, and p38MAPK. Further analysis of the MC fraction by HPLC identified kaempferol, biochanin A, and formononetin as the major phenolic components. Both kaempferol and biochanin A, but not formononetin, could exert anti-inflammatory effect at the same concentrations as those of the MC fraction. Consequently, these results indicate that kaempferol and biochanin A are among the most effective anti-inflammatory phenolic components in barnyard millet grains. This finding suggests that barnyard millet grains and the MC extract enriched in kaempferol and biochanin A could be beneficial functional food sources that have an anti-inflammatory effect.
Keywords
Anti-inflammation; barnyard millet grains; cytokines; MAPKs; NF-${\kappa}B$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Basu, S., Ghosh, A. and Hazra, B. 2005. Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents. Phytother Res 19, 888-894.   DOI   ScienceOn
2 Corriveau, C. C. and Danner, R. L. 1993. Endotoxin as a therapeutic target in septic shock. Infect Agents Dis 2, 35-43.
3 Davis, R. J. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252.   DOI   ScienceOn
4 Green, L. C., Wanger, D. A. and Glogowski, J. 1982. Analysis of nitrate, nitrite, and [$^{15}N$] nitrate in biological fluids. Anal Biochem 126, 131-138.   DOI   ScienceOn
5 Esmaillzadeh, A., Mirmiran, P. and Azizi, F. 2005. Wholegrain intake and the prevalence of hypertriglyceridemic waist phenotype in Tehranian adults. Am J Clin Nutr 81, 55-63.   DOI
6 Fardet, A. 2010. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 23, 65-134.
7 Flohe, L., Brigelius-Flohe, R., Saliou, C., Traber, M. G. and Packer, L. 1997. Redox regulation of $NF-{\kappa}B$ activation. Free Radic Biol Med 22, 1156-1126.   DOI   ScienceOn
8 Guha, M. and Mackman, N. 2001. LPS induction of gene expression in human monocytes. Cell Signal 13, 85-94.   DOI   ScienceOn
9 Hegde, P. S. and Chandra, T. S. 2005. ESR spectroscopic study reveals higher free radical quenching potential in kodo millet (Paspalum scrobiculatum) compared to other millets. Food Chem 92, 177-182.   DOI
10 Higashi-Okai, K., Ishida, E., Nakamura, Y., Fujiwara, S. and Okai, Y. 2008. Potent antioxidant and radical-scavenging activities of traditional Japanese cereal grains. J UOEH 30, 375-389.   DOI
11 Hoebe, K., Janssen, E. and Beutler, B. 2004. The interface between innate and adaptive immunity. Nat Immunol 5, 971-974.
12 Hosoda, A., Okai, Y., Kasahara, E., Inoue, M., Snhimizu, M., Usui, Y., Sekiyama, A. and Higashi-Okai, K. 2012. Potent immunomodulating effects of bran extracts of traditional Japanese millets on nitric oxide and cytokine production of macrophages (RAW264.7) induced by lipopolysaccharide. J UOEH 34, 285-296.   DOI
13 Hur, S. J, Kang, S. H., Jung, H. S., Kim, S. C., Jeon, H. S., Kim, I. H. and Lee, J. D. 2012. Review of natural products actions on cytokines in inflammatory bowel disease. Nutr Res 32, 801-816.   DOI
14 Kong, X., Thimmulappa, R., Kombairaju, P. and Biswal, S. 2010. NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol 185, 569-577.   DOI
15 Janessen-Heininger, Y. M., Poynter, M. E. and Baeuerle, P. A. 2000. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappa B. Free Radic Biol Med 28, 1317-1327.   DOI   ScienceOn
16 Kim, H. K., Park, A. H., Lee, J. S., Chung, T. S., Chung, H. Y. and Chung, A. J. 2007. Down-regulation of iNOS and TNF-a expression by kaempferol via $NF-{\kappa}B$ inactivation in aged rat gingival tissues. Biogerontology 8, 399-408.   DOI   ScienceOn
17 Lee, S. H., Chung, I. M., Cha, Y. S. and Park, Y. 2010. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr Res 30, 290-296.   DOI   ScienceOn
18 Kole, L., Giri, B., Manna, S. K., Pal, B. and Ghosh, S. 2011. Biochanin-A, an isoflavone, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking $NF-{\kappa}B$ nuclear translocation. Eur J Pharmacol 653, 8-15.   DOI
19 Kubes, P. and McCafferty, D. M. 2000. Nitric oxide and intestinal inflammation. Am J Med 109, 150-158.   DOI   ScienceOn
20 Kurt-Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T., Anderson, L. J. and Finberg, R. W. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1, 398-401.   DOI   ScienceOn
21 Lende, A. B., Kshirsagar, A. D., Deshpande, A. D., Muley, M. M., Patil, R. R., Bafna, P. A. and Naik, S. R. 2011. Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice. Inflammopharmacology 19, 255-263.   DOI
22 Odintsova, T., Rogozhin, E. A., Baranov, Y., Musolyamov, A. Kh., Yalpani, N., Egorov, T. A. and Grishin, E. V. 2008. Seed defensins of barnyard grass Echinochloa crusgalli (L.) Beauv. Biochimie 90, 1667-1673.   DOI
23 Liu, Y., Wu, H., Nie, Y. C., Chen, J. L., Su, W. W. and Li, P. B. 2011. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting $NF-{\kappa}B$ pathway. Int Immunopharmacol 11, 1606-1612.   DOI
24 Watanabe, M. 1999. Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 47, 4500-4505.   DOI   ScienceOn
25 Seo, W. D., Kim, J. Y., Jang, K. C., Han, S. I., Ra, J. E., Oh, S. H., Lee, J. H., Kim, Y. G., Kang, H. J., Kim, B. J. and Nam, M. H. 2012. Anti-pigmentation effect of serotonin alkaloid isolated from Korean barnyard millet (Echinochola utilis). J Korean Soc Appl Biol Chem 55, 579-586.   과학기술학회마을   DOI
26 Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of $NF-{\kappa}B$ activation. Mutat Res 480-481, 243-268.   DOI   ScienceOn
27 Ugare, R., Chimmad, B., Naik, R., Bharati, P. and Itagi, S. 2014. Glycemic index and significance of barnyard millet (Echinochloa frumentacae) in type II diabetics. J Food Sci Technol 51, 392-395.   DOI
28 Watson, W. H., Zhao, Y. and Chawla, R. K. 1999. S-adenosylmethionine attenuates the lipopolysaccharide-induced expression of the gene for tumor necrosis factor alpha. Biochem J 342, 21-25.   DOI   ScienceOn
29 Abuelsaad, A. S., Allam, G. and Al-Solumani, A. A. 2014. Hesperidin inhibits inflammatory response induced by Aeromonas hydrophila infection and alters CD4+/CD8+ T cell ratio. Mediators Inflamm 2014, 393217.
30 Choi, I. S., Choi, E. Y., Jin, J. Y., Park, H. R., Choi, J. I. and Kim, S. J. 2013. Kaempferol inhibits P. intermedia lipopolysaccharide- induced production of nitric oxide through translational regulation in murine macrophages: critical role of heme oxygenase-1-mediated ROS reduction. J Periodontol 84, 545-555.   DOI   ScienceOn
31 Akira, S. and Takeda, K. 2004. Toll-like receptor signaling. Nat Rev Immunol 4, 499-511.   DOI   ScienceOn
32 Sahyoun, N. R., Jacques, P. F., Zhang, X. L., Juan, W. and McKeown, N. M. 2006. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am J Clin Nutr 83, 124-31.   DOI
33 Ma, Z., Ji, W., Fu, Q. and Ma, S. 2013. Formononetin inhibited the inflammation of LPS-induced acute lung injury in mice associated with induction of PPAR gamma expression. Inflammation 36, 1560-1566.   DOI
34 Nishizawa, N., Togawa, T., Park, K. O., Sato, D., Miyakoshi, Y., Inagaki, K., Ohmori, N., Ito, Y. and Nagasawa, T. 2009. Dietary Japanese millet protein ameliorates plasma levels of adiponectin, glucose, and lipids in type 2 diabetic mice. Biosci Biotechnol Biochem 73, 351-360.   DOI   ScienceOn
35 Ryazantsev, D. Y., Rogozhin, E. A., Dimitrieva, T. V., Drobyazina, P. E., Khadeeva, N. V., Egorov, T. A., Grishin, E. V. and Zavriev, S. K. 2014. A novel hairpin-like antimicrobial peptide from barnyard grass (Echinochloa crusgalli L.) seeds: Structure functional and molecular-genetics characterization. Biochimie 99, 63-70   DOI
36 Talero, E., Avila-Roman, J. and Motilva, V. 2012. Chemoprevention with phytonutrients and microalgae products in chronic inflammation and colon cancer. Curr Pharm Des 18, 3939-3965.   DOI
37 Seo, M. C., Ko, J. Y., Song, S. B., Lee, J. S., Kang, J. R., Kwak, D. Y., Oh, B. G., Yoon, Y. N., Nam, M. H., Jeong, H. S. and Woo, K. S. 2011. Antioxidant compounds and activities of foxtail millet, proso millet and sorghum with different pulverizing methods. J Korean Soc Food Sci Nutr 40, 790-797.   과학기술학회마을   DOI   ScienceOn
38 Saiprasad, G., Chitra, P., Manikandan, R. and Sudhandiran, G. 2013. Hesperidin alleviates oxidative stress and downregulates the expressions of proliferative and inflammatory markers in azoxymethane-induced experimental colon carcinogenesis in mice. Inflamm Res 62, 425-440.   DOI   ScienceOn