• Title/Summary/Keyword: bar shear connector

Search Result 19, Processing Time 0.023 seconds

Pull-out Resistance Capacity Evaluation of Perfobond Rib Shear Connector (유공강판 전단연결재의 인발저항성능 평가)

  • Kim, Young-Ho;Koo, Hyun-Bon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.853-859
    • /
    • 2008
  • As a new system of steel pipe pile cap reinforcement, the application of perforated flat bar bolted to the steel pipe pile head was suggested for the improvement of structural performance of footing structure. This study investigates the structural characteristics of perforated flat bar shear connectors according to shape and diameter of hole, number of rebars passing through the hole and the depth of settlement. The result shows several requirements to ensure sufficient pull-out resistance and ductility such as that the hole diameter excluding diameter of rebar should exceed the size of aggregates; the hole should be perforated with diameter as the half of plate height; and the adequate depth of settlement should be ensured for the optimal performance.

Push-out Performance Test of Composite Steel Truss Deck using Light Weight Concrete (경량콘크리트를 사용한 합성 철선트러스 데크의 푸쉬 아웃 성능 실험)

  • Choi, Byong Jeong;Moon, Hyo Jin;Han, Hong Soo;Han, Kweon Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • Push-out tests were performed to evaluate the shear capacity of a composite steel truss deck slab system, called an automatic prefabrication bar-mesh system, using lightweight concrete. The six specimens were classified into three groups: DP, NDP, and Solid, according to the variations between the bar mesh and the zinc plate automatic prefabrications. This paper focused on the failure behaviors, load-displacement characteristics, and a performance comparison based on design codes.

Behavior Characteristics of U-Shape Wide Composite Beam (U자형 와이드 합성보의 거동특성)

  • Choi, Yun-Cheul;Lee, Sang-Sup;Choi, Hyun-Ki;Park, Keum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.125-133
    • /
    • 2017
  • A parking structure has been on the spotlight to solve the parking problem in downtown area. However, the overall height of parking structure is stipulated less than 8m. Therefore, in this research, the flexural and shear capacity of 'wide composite beam' which can reduce story height and have long span, is evaluated. Based on test result, the rebar in truss did not affect its flexural strength. However, in the case of the specimen without the rebar, the mechanical bond strength decreased due to slip occurrence at 70% of the flexural yield strength. Based on the test of shear-bond behavior, all specimen without shear connector should be reinforced with 2 or more flat bar, because it did not have enough shear bond strength resisted by the mechanical bond mechanism.

Experimental investigation of shear connector behaviour in composite beams with metal decking

  • Qureshi, Jawed;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.475-494
    • /
    • 2020
  • Presented are experimental results from 24 full-scale push test specimens to study the behaviour of composite beams with trapezoidal profiled sheeting laid transverse to the beam axis. The tests use a single-sided horizontal push test setup and are divided into two series. First series contained shear loading only and the second had normal load besides shear load. Four parameters are studied: the effect of wire mesh position and number of its layers, placing a reinforcing bar at the bottom flange of the deck, normal load and its position, and shear stud layout. The results indicate that positioning mesh on top of the deck flange or 30 mm from top of the concrete slab does not affect the stud's strength and ductility. Thus, existing industry practice of locating the mesh at a nominal cover from top of the concrete slab and Eurocode 4 requirement of placing mesh 30 mm below the stud's head are both acceptable. Double mesh layer resulted in 17% increase in stud strength for push tests with single stud per rib. Placing a T16 bar at the bottom of the deck rib did not affect shear stud behaviour. The normal load resulted in 40% and 23% increase in stud strength for single and double studs per rib. Use of studs only in the middle three ribs out of five increased the strength by 23% compared to the layout with studs in first four ribs. Eurocode 4 and Johnson and Yuan equations predicted well the stud strength for single stud/rib tests without normal load, with estimations within 10% of the characteristic experimental load. These equations highly under-estimated the stud capacity, by about 40-50%, for tests with normal load. AISC 360-16 generally over-estimated the stud capacity, except for single stud/rib push tests with normal load. Nellinger equations precisely predicted the stud resistance for push tests with normal load, with ratio of experimental over predicted load as 0.99 and coefficient of variation of about 8%. But, Nellinger method over-estimated the stud capacity by about 20% in push tests with single studs without normal load.

A Study on Shear Connector Performance Estimation for Plan Extension of RC Apartment Structures (철근콘크리트 공동주택의 평면확장을 위한 연결부의 전단성능 평가에 관한 연구)

  • Kim, Dong Baek
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.27-34
    • /
    • 2015
  • Nowadays, remodeling cases for some apartment like Hyundai through the support of government are reported. Conventionally, balcony and aisle are extended for additional private area or balcony which is supported by new frame is extended. In extension work at site, dowel bar is conventionally inserted in old concrete slab for connection with old and new slab, however, an examination for structural safety is rarely performed prior to construction, if ever, vertical load is only considered for structural analysis. When conventionally connected structures are exposed to earthquake, the old and new structures have individual earthquake behavior with different mode, which may lead the elimination of resistance to earthquake in new structures. As of this reason, new detailing connection system which can have light weight and sufficient ductility performance is developed for application to domestic extension works. Additionally, user manual and specification are also developed for fertilization of application for the developed technology.

Flexural behavior of cold-formed steel concrete composite beams

  • Valsa Ipe, T.;Sharada Bai, H.;Manjula Vani, K.;Zafar Iqbal, Merchant Mohd
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.105-120
    • /
    • 2013
  • Flexural behavior of thin walled steel-concrete composite sections as cross sections for beams is investigated by conducting an experimental study supported by applicable analytical predictions. The experimental study consists of testing up to failure, simply supported beams of effective span 1440 mm under two point loading. The test specimens consisted of composite box and channel (with lip placed on tension side and compression side) sections, the behavior of which was compared with companion empty sections. To understand the role of shear connectors in developing the composite action, some of the composite sections were provided with novel simple bar type and conventional bolt type shear connectors in the shear zone of beams. Two RCC beams having equivalent ultimate moment carrying capacities as that of composite channel and box sections were also considered in the study. The study showed that the strength to weight ratio of composite beams is much higher than RCC beams and ductility index is also more than RCC and empty beams. The analytical predictions were found to compare fairly well with the experimental results, thereby validating the applicability of rigid plastic theory to cold-formed steel concrete composite beams.

Analytical, experimental and numerical study of timber-concrete composite beams for bridges

  • Molina, Julio C.;Calil, Carlito Junior;de Oliveira, Diego R.;Gomes, Nadia B.
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.103-115
    • /
    • 2019
  • In this study, the strength and stiffness (EI) of wood-concrete composite beams for bridges with T-shaped cross section were evaluated. Two types of connectors were used: connectors bonded with epoxy adhesive and connectors attached to the wood just by pre-drilling (without adhesive). The connectors consisted of common steel bars with a diameter of 12.5 mm. Initially, the strength and stiffness (EI) of the beams were analyzed by bending tests with the load applied at the third point of the beam. Subsequently, the composite beams were evaluated by numerical simulation using ANSYS software with focus on the connection system. To make the composite beams, Eucalyptus citriodora wood and medium strength concrete were used. The slip modulus K and the ultimate strength values of each type of connector were obtained by direct shear tests performed on composite specimens. The results showed that the connector glued with epoxy adhesive resulted in better strength and stiffness (EI) for the composite beams when compared to the connector fixed by pre-drilling. The differences observed were up to 10%. The strength and stiffness (EI) values obtained analytically by $M{\ddot{o}}hler^{\prime}$ model were lower than the values obtained experimentally from the bending tests, and the differences were up to 25%. The numerical simulations allowed, with reasonable approximation, the evaluation of stress distributions in the composite beams tested experimentally.

Evaluation on Effective Width of Concrete Unfilled Composite Steel Grid Deck (콘크리트 비충전 강합성 바닥판의 유효폭 평가)

  • Park, Young Hoon;Lee, Seung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.521-529
    • /
    • 2017
  • In this study, analyzed the effective width of concrete unfilled composite steel grid deck which has different shear connector details from that of composite bridge. The effective width of concrete unfilled composite steel grid deck according to effective width calculation method, load size and main bearing bar spacing-span ratio was evaluated. As a result of analysis, it is analyzed that the effective width is calculated to be nearly equal to the actual effective width by idealizing the stress shape as a trapezoidal shape. In addition, shear hole penetration reinforcing bars applied to increase the shear strength is shown to increase the effective width. From the results of the analysis of the effective width according to main bearing bar spacing-span ratio, proposes the correction factor that can calculate the effective width ratio of the unfilled steel composite steel grid deck.

Experimental Study for Performance Evaluation of Structural Details of Girder-Abutment Joint in Integral Abutment Steel Bridge (일체식교대 강교량의 거더-교대 연결부 상세의 거동평가를 위한 실험적 연구)

  • Kim, Sang-Hyo;Yoon, Ji-Hyun;Choi, Woo-Jin;Kim, Jun-Hwan;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.61-72
    • /
    • 2011
  • In this study, the structural details of steel girder-abutment joints with shear connectors and tie bars were suggested to improve the rigid behavior and crack-resisting capacity of the joints in integral bridges. Experimental loading tests of steel girder-abutment joint specimens with the proposed and empirically constructed structural details were carried out, and the capacities and behavioral characteristics of the joints were evaluated through loading tests. Based on the results of the loading tests, it was estimated that all types of tested joints can be applied to the steel girder-abutment joints because they have sufficient stiffness and crack-resisting capacity under the required design and yield loads. According to the initial stiffness, crack propagations, and load-strain relationships, however, the joints with shear connectors and tie bars showed better structural behaviors compared to the empirically constructed joint.