• Title/Summary/Keyword: bar diameter

Search Result 390, Processing Time 0.035 seconds

Implementation of bond-slip effects on behaviour of slabs in structures

  • Mousavi, S.S.;Dehestani, M.
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.311-327
    • /
    • 2015
  • Employing discrete elements for considering bond-slip effects in reinforced concrete structures is very time consuming. In this study, a new modified embedded element method is used to consider the bond-slip phenomenon in structural behavior of reinforced concrete structures. A comprehensive parametric study of RC slabs is performed to determine influence of different variables on structural behavior. The parametric study includes a set of simple models accompanied with complex models such as multi-storey buildings. The procedure includes the decrease in the effective stiffness of steel bar in the layered model. Validation of the proposed model with existing experimental results demonstrates that the model is capable of considering the bond-slip effects in embedded elements. Results demonstrate the significant effect of bond-slip on total behavior of structural members. Concrete characteristic strengths, steel yield stress, bar diameter, concrete coverage and reinforcement ratios are the parameters considered in the parametric study. Results revealed that the overall behavior of slab is significantly affected by bar diameter compared with other parameters. Variation of steel yield stress has insignificant impact in static response of RC slabs; however, its effect in cyclic behavior is important.

Response of lap splice of reinforcing bars confined by FRP wrapping: modeling approach

  • Thai, Dam Xuan;Pimanmas, Amorn
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.95-110
    • /
    • 2011
  • This paper presents a tri-uniform bond stress model for predicting the lap splice strength of reinforcing bar at the critical bond splitting failure. The proposed bond distribution model consists of three zones, namely, splitting zone, post-splitting zone and yielding zone. In each zone, the bond stress is assumed to be constant. The models for bond strength in each zone are adopted from previous studies. Combining the equilibrium, strain-slip relation and the bond strength model in each zone, the steel stress-slip model can be derived, which can be used in the nonlinear frame analysis of the column. The proposed model is applied to derive explicit equations for predicting the strength of the lap splice strengthened by fiber reinforced polymer (FRP) in both elastic and post-yield ranges. For design purpose, a procedure to calculate the required FRP thickness and the number of FRP sheets is also presented. A parametric investigation was conducted to study the relation between lap splice strength and lap splice length, number and thickness of FRP sheets and the ratio of concrete cover to bar diameter. The study shows that the lap splice strength can be enhanced by increasing one of these parameters: lap splice length, number or thickness of FRP sheets and concrete cover to bar diameter ratio. Verification of the model has been conducted using experimental data available in literature.

Performance evaluation of different shapes of headed bars in steel fiber reinforced concrete

  • Sachdeva, Payal;Danie Roy, A.B.;Kwatra, Naveen
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.387-396
    • /
    • 2021
  • The behavior of headed bars in concrete is investigated through 108 pullout tests having an embedment depth of eight times the bar diameter in the M20 concrete mix. Headed bars are designed based on ASTM A970-16 and ACI 318-19 recommendations. The primary parameters used in this study are the steel bar diameter, the steel fibers percentage, and the head shapes. Three failure modes namely, Steel, Concrete-Blowout & Pull-Through failure have been observed. Based on load-deflection curves which are plotted to investigate the bond capacity of headed bars, it is observed that the circular-headed bars have displayed the highest peak load. The comparative analysis shows the smaller differences in the ultimate bond strength between MC2010 (0.89-2.26 MPa) and EN 1992-1-1 (2.32 MPa) as compared to ACI-318-19 (11-22 MPa) which is due to the absence of embedment depth and peak load factor in MC2010 and EN 1992-1-1 respectively.

Explosion Hazard Assessment of Pharmaceutical Raw Materials Powders (원료의약품 분진의 폭발 위험성 평가)

  • Lee, Joo Yeob;Lee, Keun Won;Park, Sang Yong;Han, In Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.600-608
    • /
    • 2017
  • Hazard risk of explosion on pharmaceutical raw materials dust in pharmaceutical industry often exists when it is handled or processed in the industrial sites, and explosion accident is caused by this. In this study, the dust explosion characteristics of the three pharmaceutical raw materials samples were measured. The main explosion characteristics are as follows: $P_{max}$, MIE and MIT of loxoprofen acid having $5.31^{\circ}C$ of median diameter are obtained 8.4 bar, 1 mJ < MIE < 3 mJ and $550^{\circ}C$. $P_{max}$, MIE and MIT of camphorsulfonate having $95.63^{\circ}C$ of median diameter are obtained 7.9 bar, 30 mJ < MIE < 100 mJ and $510^{\circ}C$. $P_{max}$, MIE and MIT of rifampicine having $26.48^{\circ}C$ of median diameter are obtained 7.9 bar and 1 mJ < MIE < 3 mJ and $470^{\circ}C$. The deflagration index ($K_{st}$) and the explosion index (EI) were obtained by using these data. The explosion hazard assessment of pharmaceutical raw materials dust was compared and examined. As a result, the explosion hazard assessment according to deflagration index and explosion index were the explosion class with St 2 and the explosion hazard rating of severe for loxoprofen acid & rifampicine and St 1 and strong for clopidogrel camphorsulfonate, respectively.

Bond Characteristics of Reinforcing Bars Embeded in High Strength Concrete (고강도 콘크리트에 매립된 철근의 부착특성)

  • 최종수;유석형;안종문;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.319-324
    • /
    • 1994
  • Bond test was carried out to assess the effect of several variables on bond characteristics between reinforcing bar and concrete. Key variables are concrete compressive strength(low, medium high, and ultra-high), bar diameter(13mm and 22mm), and concrete cover(25mm; 1-inch, 38mm; 1.5-inch, and 51mm; 2-inch). Confining effect and bar spacing are not taken into account. Thirty-two specimens subjected to uniaxial tension were tested under hypothesis uniform bond stress distribution along the reinforcing bar embeded in concrete. Test results(ultimate bond stress) were compared with bond and development provisions of the ACI building Code(ACl 318-89) and local bond stress versus slip relationship diagram represented to show effect of the above variables.

  • PDF

Shapes and Deformation of the Hydrogen Absorption Metal (수소저장금속의 형상과 변형)

  • 정영관;박규섭;이근진;김경훈;김세웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1382-1385
    • /
    • 2003
  • Deformation on shapes of the hydrogen absorption metal in this paper was investigated on hydrogen absorption-desorption cycling. In order to study this problem, the cold rolled palladium plate and the cold extrusion palladium bar as specimens had been used. By using the electrochemical method, the palladium specimens were cyclically hydrogenated in the 0.1 mol H$_2$SO$_4$ electrolyte. As results, it is noted that the thickness of the plate specimen gradually increased in increasing hydrogenation cycles whereas the width and the length decreased. But both the diameter and the length of the bar specimen increased with increasing hydrogenation cycles. Also, grains in the plate specimen were greatly deformed after hydrogenation cycling whereas internal grains in the bar specimen were pulverized. And deterioration of the hydrogen absorption rate of the bar specimen was lager than the plate specimen.

  • PDF

The Technology Development for applying the High Strength Headed Deformed Bar to the Nuclear Power Plant Structures (원전구조물의 확대머리 고강도철근 적용기술 개발)

  • Lee, Byung-Soo;Bang, Chang-Joon;Lee, Han-Woo;Lim, Sang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.273-275
    • /
    • 2013
  • If the mechanical development is applied to the Nuclear Power Plant Structures instead of the standard hook development, the problem of overcrowding re-bars in the anchorage zone can be solved and the construction quality of the concrete work will be improved. But there are some problems in applying it to the NPP structures because of the restriction on the yield strength and diameter of the re-bar. After the performance evaluation test for the mechanical development, we can develop the new design equation of the mechanical development length in order to solve the limitation and apply it to NPP structures.

  • PDF

Dynamic behavior of boring bar with continuous system analysis (연속계 해석에 의한 보오링 바의 동적 거동에 관한 연구)

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Park, Soo-Kil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.38-46
    • /
    • 1994
  • The vibration amplitude of boring bar is generally large at the tool tip, because it has the high length-diameter(L/D) ratio. A new dynamic cutting force model is presented by considering the change of shear angle under dynamic cutting. The boring bar is modelled as a cantilever with dynamic force acting at the tool end point. Based on this realistic continuous system model, the equation of motion of borring bar is solved by numerical computations. A good agreement is found between the proposed model and the experimental results.

  • PDF

A Study on Spray Characteristics Analysis of Free Spray of Diesel Fuel with Ultra High Pressure (극초고압영역에서의 디젤연료의 자유분무특성에 관한 연구)

  • Jeong, D.Y.;Lee, J.T.;Hong, G.B.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.16-22
    • /
    • 2002
  • The characteristics of free spray with ultra injection pressure was analyzed to clear the limit pressure of diesel engine. To obtain final goal, ultra high pressure injection equipment was developed, spray patterns were visualized under various ultra injection pressures. Spray penetration and spray width, volume and entrained air mass were increased with the increase of injection pressure. Sauter mean diameter and injection durstion wert decreased. But over 3,000bar of ultra injection pressure region the rates of increase show almost similar and finally the reversed tendencies at 4,140bar.

  • PDF

Assessment of Accuracy for the Rebar Detecting Device at Reconstruction Site (재건축현장 철근탐사 검사장비의 정확도 평가)

  • Park Sung-Mo;Rhim Hong-Chul;Rhim Byung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.163-166
    • /
    • 2006
  • The purpose of the research is to assess the accuracy of steel bar detector among other nondestructive testing equipment. The result of previous research shows that the average errors of rebar detector are 14.7% for the cover depth, 2.3% for the rebar spacing, and 11% for the rebar diameter. But this experiment was performed at the laboratory and the mortar was used for covering the steel bars instead of concrete. In situ condition can be different from the laboratory's so the outcomes do not correspond with those of laboratory. This research was performed at the buildings to be reconstructed. Nondestructive and destructive testing can be performed side by side since the building if to be destroyed. Steel bar detector was operated on the beam and the column and concrete cover of those members was removed for the actual measurement of rebar depth, spacing, and diameter finally, presumed value can be directly compared with actual data.

  • PDF