DOI QR코드

DOI QR Code

Explosion Hazard Assessment of Pharmaceutical Raw Materials Powders

원료의약품 분진의 폭발 위험성 평가

  • Lee, Joo Yeob (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Keun Won (Occupational Safety & Health Research Institute, KOSHA) ;
  • Park, Sang Yong (Occupational Safety & Health Research Institute, KOSHA) ;
  • Han, In Soo (Occupational Safety & Health Research Institute, KOSHA)
  • 이주엽 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이근원 (한국산업안전보건공단 산업안전보건연구원) ;
  • 박상용 (한국산업안전보건공단 산업안전보건연구원) ;
  • 한인수 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2017.04.11
  • Accepted : 2017.08.09
  • Published : 2017.10.01

Abstract

Hazard risk of explosion on pharmaceutical raw materials dust in pharmaceutical industry often exists when it is handled or processed in the industrial sites, and explosion accident is caused by this. In this study, the dust explosion characteristics of the three pharmaceutical raw materials samples were measured. The main explosion characteristics are as follows: $P_{max}$, MIE and MIT of loxoprofen acid having $5.31^{\circ}C$ of median diameter are obtained 8.4 bar, 1 mJ < MIE < 3 mJ and $550^{\circ}C$. $P_{max}$, MIE and MIT of camphorsulfonate having $95.63^{\circ}C$ of median diameter are obtained 7.9 bar, 30 mJ < MIE < 100 mJ and $510^{\circ}C$. $P_{max}$, MIE and MIT of rifampicine having $26.48^{\circ}C$ of median diameter are obtained 7.9 bar and 1 mJ < MIE < 3 mJ and $470^{\circ}C$. The deflagration index ($K_{st}$) and the explosion index (EI) were obtained by using these data. The explosion hazard assessment of pharmaceutical raw materials dust was compared and examined. As a result, the explosion hazard assessment according to deflagration index and explosion index were the explosion class with St 2 and the explosion hazard rating of severe for loxoprofen acid & rifampicine and St 1 and strong for clopidogrel camphorsulfonate, respectively.

산업현장에서 취급되거나 가공되는 원료의약품 분진의 폭발 위험성은 항상 존재하며, 이로 인한 폭발사고가 자주 발생되고 있다. 본 연구에서는 원료의약품 시료 3종의 분진폭발특성을 측정하였다. 주요 폭발특성 측정값은 록소프로펜산은 평균 입경이 $5.31{\mu}m$이며, $P_{max}$는 8.4 bar, 최소점화에너지는 1 mJ < MIE < 3 mJ이며 최소점화온도는 $550^{\circ}C$이다. 클로피도그렐 캄포르술폰산염은 평균 입경이 $95.63{\mu}m$이며, $P_{max}$는 7.9 bar, 최소점화에너지는 30 mJ < MIE < 100 mJ이며 최소점화온도는 $510^{\circ}C$이었다. 리팜피신은 평균 입경이 $26.48{\mu}m$이며 $P_{max}$는 7.9 bar, 최소점화에너지는 1 mJ < MIE < 3 mJ이며 최소점화온도는 $470^{\circ}C$로 나타났다. 이들 값을 적용하여 폭연지수($K_{st}$)와 폭발지수(EI)의 폭발위험등급을 구하고, 원료의약품 분진의 폭발 위험성을 비교 검토하였다. 그 결과 폭발 위험성은 록소프로펜산과 리팜피신의 폭발등급은 St 2이고 폭발위험등급은 severe이며, 클로피도그렐 캄포르술폰산염의 폭발등급은 St 1이고 폭발위험등급은 strong으로 나타났다.

Keywords

References

  1. KHIDI, "Pharmaceutical Industry Analysis Report," Korea Health Industry Development Institute(2015).
  2. Pharmacy Subcommittee of the Pharmaceutical Society of Korea, "Pharmaceutical Dosage Forms," shinilbooks(2013).
  3. Kim, H.T. et al., "Diagnosis of Medicine Production through Cleaner Production Technology," Ministry of Commerce Industry and Energy(2003).
  4. Metropolitan Regional Center for Chemical Accident Prevention, "Report of Accident Insvestigation," KOSHA(2011).
  5. Chungcheong Regional Center for Chemical Accident Prevention, "Report of Accident Insvestigation," KOSHA(2016).
  6. Han, O. S. and Han, I. S., "Explosion Hazards of Aluminum Powers with the Variation of Mean Diameter," KIGAS, 18(4), 21-26(2014).
  7. Han, O. S., Choi, Y. R., Han, I. S. and Lee, J. S., "Flame Spreading Over Metal Dust Deposits With Particles Size," Korean Chem. Eng. Res., 48(5), 603-608(2010).
  8. EN 14034-1, Determination of explosion characteristics of dust clouds-Part 1:Determination of the maximum explosion pressure $P_{max}$ of dust clouds, European Standard(2011).
  9. EN 14034-2, Determination of explosion characteristics of dust clouds-Part 1:Determination of the maximum rate of explosion pressure $rise(dp/dt)_{max}$ of dust clouds, European Standard(2011).
  10. EN 14034-3, Determination of explosion characteristics of dust clouds-Part 1:Determination of the lower explosion limit LEL of dust clouds, European Standard(2011).
  11. EN 13821, Potentially explosive atmospheres-explosion prevention and protection-Determination of minimum ignition energy of dust/air mixtures, European Standard(2002).
  12. KS C IEC 61241-2-1, Electrical apparatus for use in the presence of combustible dust-Test method for determination the minimum ignition temperature of dust, Korean Industrial Standard(2003).
  13. Han, O. S. and Lee, S. H., "Explosion hazards and Flame Velocity in Aluminum Powders," KIGAS, 16(5), 7-13(2012).
  14. Han, O. S., Lee, K. W., "Explosion Characteristics and Flame Velocity of Suspended Plastic Powders," Korean Chem. Eng. Res., 54(3), 367-373(2016). https://doi.org/10.9713/kcer.2016.54.3.367
  15. Eckhoff, R. K., Dust explosion in the process industries (3rd ed.), Amsterdam: Gulf Professional Publishing(2003).
  16. NFPA 77, Recommended Practice on Static Electricity, National Fire Protection Association(2014).
  17. ASTM E 1515-14, Standard Test Method for Minimum Explosible Concentration of Combustible Dusts(2014).
  18. ASTM E 1491-06, Standard Test Method for Minimum Autoignition Temperature of Dust Clouds(2006).
  19. Abbasi, T. and Abbasi, S. A., "Dust explosion-Cases, Causes, Consequences, and Control," J. Hazardous Materials, 140, 7-44 (2007). https://doi.org/10.1016/j.jhazmat.2006.11.007
  20. OSHA, "Hazard Communication Guidance for Combustible Dusts," OSHA 3371-08(2009).
  21. Abuswer, M. et al., "An Optimal Level of Dust Explosion Risk Management: Framework and Application," J. Loss Prev. in the Process Ind., 26, 1530-1541(2013). https://doi.org/10.1016/j.jlp.2013.08.018
  22. Ebadt, V., "Dust Explosion Hazard Assessment," J. Loss Prev. in the Process Ind., 23, 907-912(2010). https://doi.org/10.1016/j.jlp.2010.05.006
  23. Field, Peter, Handbook of powder technology volume 4: dust explosions, Amsterdam: Elsevier(1982).
  24. NFPA 499, Recommended practice for the classification of combustible dusts and of hazardous (classified) locations for electrical installations in chemical process areas, National Fire Protection Association(2013).