• Title/Summary/Keyword: bar angle

Search Result 307, Processing Time 0.03 seconds

Implementation of Roll Control System for Passenger Car (승용차의 차량 롤 제어를 위한 시스템 구현)

  • 장주섭;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.20-26
    • /
    • 1997
  • A System for reducing vehicle body roll by active control is developed. The stabilizer bar with hydraulic rotary actuator produces anti-roll moment which suppresses roll tendency. This reduction of roll improves the driving safety as well as the ride comfort. Vehicle test data shows considerable reduction of roll angle during steady-state turning. Also improvement of ride comfort is achieved by making the actuator freely rotatable, i.e. by connecting all chambers of actuator in normal driving conditions. A control algorithm using steering wheel angle and vehicle speed signal as input valve is applied. It is compared with signal of the G-sensor.

  • PDF

Evaluate Bond strength of high Relative Rib Area Bars Using Beam-end test specimens (보 단부 부착시험체에 의한 높은마디 철근의 부착성능)

  • Seo Dong Min;Yang Seung Youl;Hong Gi Suop;Choi Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.112-115
    • /
    • 2004
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force has a limitation. Thus, the only variable is the bearing angle corresponding to the change of bond force. Higher rib height bars possessing higher shearing resistance can maintain higher bearing angle and higher splitting resistance when bars are highly confined, and consequently higher bond strength, than lower rib higher bars. In this study, from the evaluate bond strength of high Relative Rib Area Bars Using beam-end test specimens are compared with the current provisions for development of reinforcement, and the improved design method of bond strength is proposed.

  • PDF

3D FE Analysis of Hall Effect Torque Sensor and Shape Design of Its Stator teeth (홀소자 토크센서의 3차원 유한요소해석 및 고정자 치 형상설계)

  • Lee, Bo-Ram;Kim, Young-Sun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.702_703
    • /
    • 2009
  • Electric Power Steering(EPS) system is superior to conventional Hydraulic Power Steering(HPS) system in aspect of fuel economy and environmental concerns. The EPS system consists of torque sensor, electric motor, ECU(Electric Control Unit), gears and etc. Among the elements, the torque sensor is one of the core technologies of which output signal is used for main input of EPS controller. Usually, the torque sensor has used torsion bar to transform torsion angle into torque. The torsion angle of both ends of a torsion bar is measured by a contact variable resistor. In this paper, the sensor is accurately analyzed using 3D finite element method and its characteristics with respect to four different shapes of the stator teeth are compared. The four shapes are rectangular, triangular, trapezoidal and circular type.

  • PDF

A Study on the Corner Filling in the Drawing of the Rectangular Rod (사각재 인발 공정의 코너채움에 관한 연구)

  • Kim Y. C.;Kim Y. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.56-59
    • /
    • 1999
  • In the present study, in order to investigate the effect of the corner filling in the drawing of the rectangular rod from a round bar, the drawing of the square rod from a round bar has been simulated by using rigid-plastic finite element method and artificial neural network has been introduced to reduce the number of simulation. The experimental investigation has been also implemented to verify the efficiency of the application of results of present and previous study. According to the results of present and pervious study, the combination of semi-die angle gives a great effect on the corner filling in case of the irregular shaped drawing process, but, in case of the regular shaped drawing process, the main process variable on the corner filling is reduction in area.

  • PDF

Finite Element Simulation and Experimental Investigation on the Corner Filling in the Drawing of Quadrangle Rod from a Round Bar (사각재 인발 공정에서 코너 채움에 관한 유한 요소 해석 및 실험)

  • 김용철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.99-102
    • /
    • 1999
  • In this study, to investigate the effect of process variables such as reduction in area, semi-die angle and the rectangular ratio to the corner filling which influences the dimensional accuracy of the final product in the drawing of the cluadrangle rod from a round bar, it has been simulated by three dimensional rigid-plastic finite element method. In order to reduce the number of simulation artificial neural network has been introduced. Also, through the experimental investigation, the present results have been implemented on the industrial product. In results, the main process variable is the combination of the semi-die angle in case of the irregular shaped drawing process and reduction in area in the event of regular shaped drawing process, respectively.

  • PDF

A Research about optimum design of the walking robot using Jansen mechanism (얀센 메커니즘을 이용한 보행로봇의 최적설계에 관한 연구)

  • YONGZHU, JIN;Chi, Hyoung Geun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.384-388
    • /
    • 2016
  • This paper proposed a m.Sketch to search the optimal link lengths for a legged walking robot. In order to apply the m.Sketch for the proposed, set the design parameters of the constraints and use the m.Skecth to get optimal GL(Groud Length) and GAC(Ground Angle Coefficient). The legged robot designed based on four-bar linkage theory and Theo Jansen mechanism. The stride length of the legged walking robot was defined based on the proposed kinematic analysis. Use the Edison Design m.Sketch simulate and find the optimal link length having the best of the Ground Length (GL) and Ground Angle Coefficient(GAC). And use these length implemented the Theo Jansen mechanism both in Science box parts and acrylic. In addition to the further expansion of the legs to reach the goaltranslating heavy objects or person.

  • PDF

연속계 해석에 의한 보오링바의 비선형 동적 거동

  • 박수길;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.137-141
    • /
    • 1993
  • In the case of a boring bar, the vibration amplitude is generallylarge due to its high slenderness. The boring bat is then modelled as a cantilever with dynamic force acting at the free end and a generalized model of nonlinear continous system is obtained. The Analysis of model is conducted for the specific case with a zero side cutting edge angle. The dynamic behaviour is investigated for machining processes in which the the overlap factor of regenerative effect is considered. The vibration characteristics of boring bar depth of cut rather than feed rate in given slenderness.

A Development of Single Action Press Robot (프레스 단동로봇의 개발)

  • 허성창;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.261-264
    • /
    • 1997
  • A single action press robot, which consists of a driving unit, rotator, up-down feed base and feed bar, is developed and applied for the press automation. The driving unit is made up with a face cam and blade cam, which have a phase angle. The feeding system consists of a double speed-up apparatus and linear motion guides, and has a fast motion characteristics. A horizontal feeding speed of the feed bar is increased twice by the double speed-up apparatus. The driving mechanism could be simplified due to the speed-up of the feeding unit.

  • PDF

The Optimum Installation Angle of Reticulated Root Piles under Lateral Loads (횡방.향하중을 받는 그물식 뿌리말뚝의 최적 타설경사각)

  • 이승현;김명모
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.55-66
    • /
    • 1997
  • In order to investigate the influence of installation angle of reticulated root piles(RRP) on their lateral load capacities, model tests of lateral loads on RRP with various installation angles $0^{\circ}\;, 5^{\circ}\;, 10^{\circ}\;, 15^{\circ}\;, 20^{\circ}\;,and 25^{\circ}$ are carried out. One set of RRP consists of 12 piles which are installed in circular patterns forming two concentric circles, each of which has 6 piles. Each pile made of a steel bar of 5mm in diameter and 350mm in length, is coated with sand until the bar has the diameter of 6.5mm. According to the test results, RRP's response is travily influenced by the displacement level. At low displacement level(1m), lateral load capacity increases as the installation angle is increased. However, the value of the optimum installation angle decreases as the displacement level is increased. In fact, it is found to be $17.5^{\circ}$ at 6mm lateral displacement. The ratios of the lateral resistances for the optimum installation angles to those for the vertical RRP decrease as the lateral displacements are increased. Thus the effect of slant ins angle of RRP is expected to be reduced at higher level of lateral displacement.

  • PDF