• Title/Summary/Keyword: bandwidth scalability

Search Result 115, Processing Time 0.03 seconds

Bandwidth Requirement and Priority-based Synchronization Methods in Hybrid Client-Server Architecture for Mobile Multiplayer Games (모바일 멀티플레이어 게임을 위한 하이브리드 클라이언트-서버 구조의 대역폭 요건과 우선순위 기반 동기화 기법)

  • Kim, Jinhwan
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.526-534
    • /
    • 2014
  • Most of the multiplayer games available online are based on a client-server architecture because this architecture gives better administration control to the game providers than peer-to-peer architecture. In this architecture, the server is responsible for all the communication between the connected clients. The weakness of this architecture is its bandwidth requirement and scalability. Peer-to-peer architectures have then been proposed to solve these issues. In this paper, we propose a hybrid client-server architecture in which the game state is partially shared by the mobile terminal to achieve consistency among different players. Like a peer-to-peer architecture, this architecture uses client-side capacities to reduce bandwidth requirements for the server and improves consistency in wireless networks. Client events have different timeliness and consistency requirements according to their nature in the game world. These requirements lead to tasks with different priorities on CPU processing. In the proposed architecture, either the server or the client applies consistency mechanism according to the priority level. Simulation experiments show that the bandwidth of the server in this architecture is smaller than that of the client-server architecture. As a result, the server in the proposed architecture can accommodate more clients with enhancing the scalability.

Adaptive Admission Control Mechanism in Differentiated Services Network (인터넷 차별 서비스 망에서 적응적 연결 수락 제어 메커니즘)

  • 이준화;양미정;이우섭;김상하
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.83-93
    • /
    • 2003
  • Differentiated service networks, based on bandwidth broker, perform the control and management of QoS provisioning for the QoS guaranteed services, However, the centralized bandwidth broker model has a scalability problem since it has centralized resource management for the admission control function of all call attempts, Therefore, in this paper, we proposea novel adaptive admission control mechanism according to the attempted call status for enhancing the scalability under the centralized bandwidth broker model in IP differentiated service networks, The proposed mechanism decouples the function of admission control from the bandwidth broker, So, the ingress edge node performs the admission control and the bandwidth broker performs the resource management and QoS provisioning, We also introduce an edge-to-edge path concepts and the ingress edge node performs the admission control under the allocated bandwidth to eachpath. The allocated bandwidth per path adaptively varies according to the status of the attempted calls, This mechanism can significantly reduce the number of communication message between the bandwidth broker and each edge node in the network and increase the bandwidth utilization via adaptable resource allocation, In this paper we study the adaptive admission control operation and show the efficient and extensive improvement through the performance evaluation.

Research about Scalability selection method that apply to Image Scene (영상 화면에 적용한 확장적응성 선택 방법에 관한 연구)

  • Geon, Song Dae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.91-96
    • /
    • 2008
  • An image scalablity function is noted as technology to embody One Source-Multi-use's Image division by the network Bandwidth and diversification of resolution of reception terminal recently. In MPEG present H.264/MPEG-4 AVC that do to standardization of SVC (Scalable Video Coding) that know go and SVC can offer space time SNR scalability. But, encoding that do scalable usually is known that encoding efficiency drops than encoding that do rain scalable during time and treatise that see. Examine technique to plan improvement of management quality as that aim to time, SNR scalability in treatise that see so and change FGS (Fine Granular Scalability) function that offer SNR scalability that do about scalability's particle size and encoding efficiency relation by SVC to foundation.

  • PDF

Impact of Segregation Layer on Scalability and Analog/RF Performance of Nanoscale Schottky Barrier SOI MOSFET

  • Patil, Ganesh C.;Qureshi, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • In this paper, the impact of segregation layer density ($N_{DSL}$) and length ($L_{DSL}$) on scalability and analog/RF performance of dopant-segregated Schottky barrier (DSSB) SOI MOSFET has been investigated in sub-30 nm regime. It has been found that, although by increasing the $N_{DSL}$ the increased off-state leakage, short-channel effects and the parasitic capacitances limits the scalability, the reduced Schottky barrier width at source-to-channel interface improves the analog/RF figures of merit of this device. Moreover, although by reducing the $L_{DSL}$ the increased voltage drop across the underlap length reduces the drive current, the increased effective channel length improves the scalability of this device. Further, the gain-bandwidth product in a common-source amplifier based on optimized DSSB SOI MOSFET has improved by ~40% over an amplifier based on raised source/drain ultrathin-body SOI MOSFET. Thus, optimizing $N_{DSL}$ and $L_{DSL}$ of DSSB SOI MOSFET makes it a suitable candidate for future nanoscale analog/RF circuits.

Reduction Method of Network Bandwidth Requirement for the Scalability of Multiplayer Game Server Systems (멀티플레이어 게임 서버 시스템의 규모조정을 위한 통신 대역폭 요건 감소 기법)

  • Kim, Jinhwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.29-37
    • /
    • 2013
  • Multiplayer games typically organized based on a client-server(CS) or peer-to-peer(PP) architecture. The CS architecture is not scalable with the number of players due to a large bandwidth requirement at the server. The PP architecture, on the other hand, introduces significant overhead for the players, as each player needs to check the consistency between its local state and the state of all other players. We then propose a method that combines the merits of CS and PP. In this method, players exchange updates with lower priority in a peer-to-peer manner but communicate directly with a central server for the other updates. As a result, the proposed method has a lower network bandwidth requirement than the server of a CS architecture and the server bandwidth bottleneck is removed. For another important issue about multiplayer games, this method always maintains state consistency among players correctly. The performance of this method is evaluated through extensive simulation experiments and analysis.

P2P Systems based on Cloud Computing for Scalability of MMOG (MMOG의 확장성을 위한 클라우드 컴퓨팅 기반의 P2P 시스템)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose an approach that combines the technological advantages of P2P and cloud computing to support MMOGs that allowing a huge amount of users worldwide to share a real-time virtual environment. The proposed P2P system based on cloud computing can provide a greater level of scalability because their more resources are added to the infrastructure even when the amount of users grows rapidly. This system also relieves a lot of computational power and network traffic, the load on the servers in the cloud by exploiting the capacity of the peers. In this paper, we describe the concept and basic architecture of cloud computing-based P2P Systems for scalability of MMOGs. An efficient and effective provisioning of resources and mapping of load are mandatory to realize this architecture that scales in economical cost and quality of service to large communities of users. Simulation results show that by controlling the amount of cloud and user-provided resource, the proposed P2P system can reduce the bandwidth at the server while utilizing their enough bandwidth when the number of simultaneous users keeps growing.

A linear systolic array based architecture for full-search block matching motion estimator (선형 시스토릭 어레이를 이용한 완전탐색 블럭정합 이동 예측기의 구조)

  • 김기현;이기철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.313-325
    • /
    • 1996
  • This paper presents a new architecture for full-search block-matching motion estimation. The architecture is based on linear systolic arrays. High speed operation is obtained by feeding reference data, search data, and control signals into the linear systolic array in a pipelined fashion. Input data are fed into the linear systolic array at a half of the processor speed, reducing the required data bandwidth to half. The proposed architecture has a good scalability with respect to the number of processors and input bandwidth when the size of reference block and search range change.

  • PDF

Multiple Constraint Routing Protocol for Frequency Diversity Multi-channel Mesh Networks using Interference-based Channel Allocation

  • Torregoza, John Paul;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1632-1644
    • /
    • 2007
  • Wireless Mesh Networks aim to attain large connectivity with minimum performance degradation, as network size is increase. As such, scalability is one of the main characteristics of Wireless Mesh Networks that differentiates it from other wireless networks. This characteristic creates the need for bandwidth efficiency strategies to ensure that network performance does not degrade as the size of the network increase. Several researches have been done to realize mesh networks. However, the researches conducted were mostly focused on a per TCP/IP layer basis. Also, the studies on bandwidth efficiency and bandwidth improvement are usually dealt with as separate issues. This paper aims to simultaneously study bandwidth efficiency and improvement. Aside from optimizing the bandwidth given a fixed capacity, the capacity is also increased using results of physical layer studies. In this paper, the capacity is improved by using the concept of non-overlapping channels for wireless communication. A channel allocation scheme is conceptualized to choose the transmission channel that would optimize the network performance parameters with consideration of chosen Quality of Service (QoS) parameters. Network utility maximization is used to optimize the bandwidth after channel selection. Furthermore, a routing scheme is proposed using the results of the network utilization method and the channel allocation scheme to find the optimal path that would maximize the network gain.

  • PDF

Cloud Assisted P2P Live Video Streaming over DHT Overlay Network (DHT 오버레이 네트워크에서 클라우드 보조의 P2P 라이브 비디오 스트리밍)

  • Lim, Pheng-Un;Choi, Chang-Yeol;Choi, Hwang-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • Many works have attempted to solve the scalability, the availability, and the low-latency problems of peer-to-peer (P2P) live video streaming; yet, the problems still remain. While tree-based systems are vulnerable to churn, the mesh-based systems suffer from high delay and overhead. The DHT-aided chunk-driven overlay (DCO) [1] tried to tackle these problems by using the distributed hash table (DHT), which structures into a mesh-based overlay to efficiently share the video segment. However, DCO fully depends on the capacity of the users' device which is small and unstable, i.e., the users' device may leave and join the network anytime, and the video server's bandwidth can be insufficient when the number of users joining the network suddenly increases. Therefore, cloud assist is introduced to overcome those problems. Cloud assist can be used to enhance the availability, the low-latency, and the scalability of the system. In this paper, the DHT is used to maintain the location of the streaming segments in a distributed manner, and the cloud server is used to assist other peers when the bandwidth which required for sharing the video segment is insufficient. The simulation results show that by using the threshold and cloud assist, the availability and the low-latency of the video segments, and the scalability of the network are greatly improved.

OFPT: OpenFlow based Parallel Transport in Datacenters

  • Liu, Bo;XU, Bo;Hu, Chao;Hu, Hui;Chen, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4787-4807
    • /
    • 2016
  • Although the dense interconnection datacenter networks (DCNs) (e.g. FatTree) provide multiple paths and high bisection bandwidth for each server pair, the single-path TCP (SPT) and ECMP which are widely used currently neither achieve high bandwidth utilization nor have good load balancing. Due to only one available transmission path, SPT cannot make full use of all available bandwidth, while ECMP's random hashing results in many collisions. In this paper, we present OFPT, an OpenFlow based Parallel Transport framework, which integrates precise routing and scheduling for better load balancing and higher network throughput. By adopting OpenFlow based centralized control mechanism, OFPT computes the optimal path and bandwidth provision for each flow according to the global network view. To guarantee high throughput, OFPT dynamically schedules flows with Seamless Flow Migration Mechanism (SFMM), which can avoid packet loss in flow rerouting. Finally, we test OFPT on Mininet and implement it in a real testbed. The experimental results show that the average network throughput in OFPT is up to 97.5% of bisection bandwidth, which is higher than ECMP by 36%. Besides, OFPT decreases the average flow completion time (AFCT) and achieves better scalability.