DOI QR코드

DOI QR Code

Impact of Segregation Layer on Scalability and Analog/RF Performance of Nanoscale Schottky Barrier SOI MOSFET

  • Patil, Ganesh C. (Department of Electrical Engineering, Indian Institute of Technology) ;
  • Qureshi, S. (Department of Electrical Engineering, Indian Institute of Technology)
  • Received : 2011.09.21
  • Published : 2012.03.31

Abstract

In this paper, the impact of segregation layer density ($N_{DSL}$) and length ($L_{DSL}$) on scalability and analog/RF performance of dopant-segregated Schottky barrier (DSSB) SOI MOSFET has been investigated in sub-30 nm regime. It has been found that, although by increasing the $N_{DSL}$ the increased off-state leakage, short-channel effects and the parasitic capacitances limits the scalability, the reduced Schottky barrier width at source-to-channel interface improves the analog/RF figures of merit of this device. Moreover, although by reducing the $L_{DSL}$ the increased voltage drop across the underlap length reduces the drive current, the increased effective channel length improves the scalability of this device. Further, the gain-bandwidth product in a common-source amplifier based on optimized DSSB SOI MOSFET has improved by ~40% over an amplifier based on raised source/drain ultrathin-body SOI MOSFET. Thus, optimizing $N_{DSL}$ and $L_{DSL}$ of DSSB SOI MOSFET makes it a suitable candidate for future nanoscale analog/RF circuits.

Keywords

References

  1. T. Skotnicki et al., "The End of CMOS Scaling: Toward the introduction of new materials and structural changes to improve MOSFET performance," IEEE Circuits Devices Mag., Vol.21, No.1, pp.16-26, 2005. https://doi.org/10.1109/MCD.2005.1388765
  2. A. Majumdar et al., "Gate Length and Performance Scaling of Undoped-body Extreamly Thin SOI MOSFETs," IEEE Electron Device Lett., Vol.30, No.4, pp.413-415, 2009. https://doi.org/10.1109/LED.2009.2014086
  3. Z. Zhang, S. Zhang and M. Chan, "Self-align Recessed Source Drain Ultrathin Body SOI MOSFET," IEEE Electron Device Lett., Vol.25, No.1, pp.740-742, 2004. https://doi.org/10.1109/LED.2004.837582
  4. J. M. Larson and J. P. Snyder, "Overview and Status of Metal S/D Schottky-barrier MOSFET Technology," IEEE Trans. Electron Devices, Vol.53, No.5, pp.1048-1058, 2006. https://doi.org/10.1109/TED.2006.871842
  5. L. Zeng et al., "Computational Study of Dopantsegregated Schottky Barrier MOSFETs," IEEE Trans. Nanotechnol, Vol.9, No.1, pp.108-113, 2010. https://doi.org/10.1109/TNANO.2009.2031230
  6. C.-H. Shih and S.-P. Yeh, "Device Considerations and Design Optimizations for Dopant Segregated Schottky Barrier MOSFETs," Semicond. Sci. Technol., Vol.23, 125033, 2008. https://doi.org/10.1088/0268-1242/23/12/125033
  7. J. Knoch et al., "Effective Schottky barrier lowering in Silicon-on-Insulator Schottky-barrier Metal-Oxide-Semiconductor Field-Effect Transistors using Dopant Segregation," Appl. Phy. Lett., Vol.87, pp.263505-3, 2005. https://doi.org/10.1063/1.2150581
  8. R. A. Vega and T.-J. King Liu, "A Comparative Study of Dopant-Segregated Schottky and Raised Source/Drain Double-Gate MOSFETs," IEEE Trans. Electron Devices, Vol.55, No.10, pp.2665-2677, 2008. https://doi.org/10.1109/TED.2008.2003024
  9. C. Urban et al., "Small-Signal Analysis of High-Performance p-and n-type SOI SB-MOSFETs with Dopant Segregation," Solid-State Electronics, Vol.54, No.9, pp.877-882, 2010. https://doi.org/10.1016/j.sse.2010.04.013
  10. R. A. Vega and T.-J. King Liu, "Dopant-Segregated Schottky Junction Tunning with Fluorine Presilicidation Ion Implant," IEEE Trans. Electron Devices, Vol.57, No.5, pp.1084-1092, 2010. https://doi.org/10.1109/TED.2010.2044283
  11. R. Valentin et al., "Optimization of RF Performance of Metallic Source/Dtrain SOI MOSFETs using Dopant Segregation at the Schottky Intrface," IEEE Electron Device Lett., Vol.30, No.11, pp.1197-1199, 2009. https://doi.org/10.1109/LED.2009.2031254
  12. G. Zhu at al., "Subcircuit Compact Model for Dopant-segregated Schottky Gate-all-around Sinanowire MOSFETs," IEEE Trans. Electron Devices, Vol.57, No.4, pp.772-781, 2010. https://doi.org/10.1109/TED.2010.2041513
  13. International Technology Roadmap for Semiconductors, 2009 [online] http://public.itrs.net
  14. G. C. Patil and S. Qureshi, "Scalability and RF Performance of Dopant Segregated Schottky Barrier SOI MOSFET," Proc. of IEEE TENCON, Fukuoka, Japan, pp.1921-1926, Nov. 21-24, 2010.
  15. MEDICI Users Manual, Ver. Y-2006.06, TMA, Palo Alto, CA, 2006.
  16. Y. Omura, S. Horiguchi, M. Tabe and K. Nishi, "Quantum-Mechanical effects on the Threshold Voltage of Ultrathin-SOI nMOSFETs," IEEE Electron Device Lett., Vol.14, No.12, pp.569-571, 1993. https://doi.org/10.1109/55.260792
  17. Y. Taur and T. H. Ning, "Fundamentals of Modern VLSI Devices," Cambridge University Press, 2003.
  18. V. P. Trivedi and J. G. Fossum, "Quantum-Mechanical effects on the Threshold Voltage of Undoped Double-Gate MOSFETs," IEEE Trans. Electron Devices, Vol.26, No.8, pp.579-582, 2005. https://doi.org/10.1109/LED.2005.852741
  19. J.G. Fossum et al., "Physical Insights on Design and Modeling of Nanoscale FinFETs," IEDM Tech. Dig., Washington, pp.679-682, Dec. 8-10, 2003.
  20. V. Kilchytska et al., "Influence of Device Engineering on the Analog and RF Performance of SOI MOSFETs," IEEE Trans. Electron Devices, Vol.50, No.3, pp.577-588, 2003. https://doi.org/10.1109/TED.2003.810471
  21. N. Mohankumar, B. Syamal and C. K. Sarkar, "Investigation of Novel attributes of Single Halo Dual-material double gate MOSFETs for analog/ RF applications," Microelectronics Reliability, Vol.49, No.12, pp.1491-1497, 2009. https://doi.org/10.1016/j.microrel.2009.06.006
  22. S. Eminente et al., "Small-Signal Analysis of Decananometer bulk and SOI MOSFETs for Analog/Mixed-Signal and RF Applications using the time-dependent Monte Carlo approach," IEEE Trans. Electron Devices, Vol.54, No.9, pp.2283-2292, 2007. https://doi.org/10.1109/TED.2007.902860
  23. U. Gogineni et al., "Effect of Substrate Contact Shape and Placement on RF Characterstics of 45 nm Low Power CMOS Devices," IEEE J. Solid-State Circuits, Vol.45, No.5, pp.998-1006, 2008.