• Title/Summary/Keyword: bandgaps

Search Result 26, Processing Time 0.027 seconds

Characteristics of the Photonic Bandgaps in Two-dimensional Photonic Crystals with a Square Lattice by FDTD Simulation (FDTD 시뮬레이션을 이용한 정방형 2차원 광자결정에서의 광자 밴드갭 특성)

  • Yeo, Jong-Bin;Yang, Hoe-Young;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • Characteristics of the photonic bandgaps (PEGs) in two-dimensional photonic crystals (2D PCs) with a square lattice have theoretically studied using a finite difference time domain (FDTD) simulation. In this paper, we propose a concept of optical coverage ratio (OCR) as a new structural parameter to determine the PEGs for E-polarized light. The OCR is an optically compensated filling factor. It is possible to normalize the PEGs of 2D PCs by introducing the OCR.

Systematic Analysis of Bandgap Evolution of Conjugated Polymers

  • Hong, Sung Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.845-850
    • /
    • 1995
  • A systematic method is presented to analyze the bandgaps of conjugated polymers in terms of geometrical relaxations and electronic effect of moieties using the equation of Eg=ΔEδr + ΔE1-4 + ΔEel. The relationship between ΔEδr and δr is derived from trans-PA and is transferred to other conjugated polymeric systems. By applying this method to heterocyclic polymers, very useful information is obtained to understand the evolution of bandgaps of PT, PPy and PF in connection with the chemical structures and electronic effect of the heteroatoms. We believe that this method is very helpful to understand the evolution of bandgaps of various conjugated polymers in connection with the chemical structures and electronic effect of moieties. Also, the method is expected to provide valuable information to design a small bandgap polymers.

Normalized characteristics of the photonic bandgaps in two-dimensional photonic crystals with a hexagonal lattice by FDID simulation (FDTD 시뮬레이션을 이용한 육방정계형 2차원 광자결정에서의 광자밴드갭 특성 정규화)

  • Yeo, Jong-Bin;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.38-38
    • /
    • 2009
  • Characteristics of the photonic bandgaps (PBGs) in two-dimensional photonic crystals (2D PCs) with a hexagonal lattice have theoretically studied using a finite difference time domain (FDTD) simulation. In this research, we propose a concept of optical coverage ratio (OCR) as a new structural parameter to determine the PBGs for E-polarized light. The OCR is an optically compensated filling factor. It is possible to normalize the PBGs of 2D PCs by introducing the OCR.

  • PDF

Electrical Stress in High Permittivity TiO2 Gate Dielectric MOSFETs

  • Kim, Hyeon-Seag;S. A. Campbell;D. C. Gilmer
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.94-99
    • /
    • 1998
  • Suitable replacement materials for ultrathin SiO2 in deeply scaled MOSFETs such as lattice polarizable films, which have much higherpermittivities than SiO2, have bandgaps of only 3.0 to 4.0 eV. Due to these small bandgaps, the reliability of these films as a gate insulator is a serious concern. Ramped voltage, time dependent dielectric breakdown, and hot carrier effect measurements were done on 190 layers of TiO2 which were deposited through the metal-organic chemical vapor deposition of titanium tetrakis-isopropoxide (TTIP). Measurements of the high and low frequency capacitance indicate that virtually no interface state are created during constant current injection stress. The increase in leakage upon electrical stress suggests that uncharged, near-interface states may be created in the TiO2 film near the SiO2 interfacial layer that allow a tunneling current component at low bias.

  • PDF

Characteristic absorbance of AlGaN epilayers grown on sapphire substrate (사파이어 기판 위에 성장된 AlGaN 에피층의 광 흡수 특성)

  • 김제원;박영균;김용태;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.153-157
    • /
    • 1999
  • The dependence of the absorption edge of wurtzite $Al_xGa_{1-x}N$ on alN mole fraction has been studied. The AlN mole fraction was varied from 0 to 1. The absorption coefficients at room temperature were determined by transmission and photothermal deflection spectroscopy. Photothermal deflection spectroscopy can be applied to determine the low absorbance values. From the results, the effective bandgaps of $Al_xGa_{1-x}N$ alloys were determined by choosing corresponding photon energies of the positions of the absorption coefficient of $6.3\times10^4\textrm{cm}^{-1}$ at the absorption curves of the $Al_xGa_{1-x}N$ alloys. From the energy position of the absorption coefficient versus AlN mole fraction, a bowing parameter of 1.3eV was determined. The bowing parameter agreed quite well with the measured effective bandgaps of AlGaN alloys.

  • PDF

A study on the photonic bandgaps in two-dimensional photonic quasicrystals by FDTD simulation (FDTD 시뮬레이션을 이용한 2차원 광자준결정 구조의 광자밴드갭 특성 연구)

  • Yeo, Jong-Bin;Yun, Sang-Don;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.530-531
    • /
    • 2008
  • 본 논문에서는 우수한 광학 특성으로 활발히 연구되고 있는 광자결정(PCs)과 이를 변형시킨 광자준결정(PQCs) 구조를 설계하고 특성을 평가, 비교하였다. 특성 평가는 cubic 및 hexagonal 기본격자의 PCs와 8-fold PQC 구조를 비교하였으며 각각 동일한 충진률 동일한 굴절률 차이의 조건을 갖도록 설계하여 구조에 따른 PBGs 변화를 살펴보았다. 계산 방법은 Maxwell 방정식을 이용한 finite difference time domain (FDTD) 전산모사법을 사용하였다. 본 연구의 결과로부터 잘 설계된 2차원 PQCs는 낮은 굴절률차이(${\Delta}n$)의 물질 구조에서도 완전한 광자밴드갭(photonic bandgaps: PBGs)를 가질 수 있다는 것을 확인하였다. 본 연구진은 다중회전 홀로그래피 방법 (multi-rotational holographic method)을 이용하여 설계된 PQCs를 완벽하게 재현하려는 공정을 진행 중에 있다.

  • PDF

All-Inorganic Metal Halide Perovskite (CsPbX3; X = Cl, Br, I) Nanocrystal-Based Photodetectors

  • Junhyuk, Ahn;Junhyeok, Park;Soong Ju, Oh
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.383-388
    • /
    • 2022
  • Currently, photodetectors are being extensively studied and developed for next-generation applications, such as in autonomous vehicles and image sensors. In this regard, all-inorganic metal halide perovskite (CsPbX3; X = Cl, Br, and I) nanocrystals (NCs) have emerged as promising building blocks for various applications owing to their high absorption coefficients, tunable bandgaps, high defect tolerances, and solution processability. These features, which are typically required for the development of advanced optoelectronics, can be engineered by modifying the chemical compositions and surface chemistry of the NCs. Herein, we briefly review various strategies adopted for the application of CsPbX3 perovskite NCs in photodetectors and for improving device performance. First, modifications of the chemical compositions of CsPbX3 NCs to tune their optical bandgaps and improve the charge-transport mechanism are discussed. Second, the application of surface chemistry to improve oxidation resistance and carrier mobility is described. In the future, perovskite NCs with prospective features, such as non-toxicity and high resistance to external stimuli, are expected to be developed for practical applications.

Electrical/Optical Characterization of Zn-Sn-O Thin Films Deposited through RF Sputtering

  • Park, Chan-Rok;Yeop, Moon-Su;Lee, Bo-Ram;Kim, Ji-Soo;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.360-360
    • /
    • 2012
  • Zn-Sn-O (Zinc-Tin-Oxide; ZTO) thin films have been gaining extensive academic and industrial attentions owing to a semiconducting channel materials applicable to large-sized flat-panel displays. Due to the constituent oxides i.e., ZnO and SnO2, the resultant Zn-Sn-O thin films possess artificially controllable bandgaps and transmittances especially effective in the visible regime. The current approach employed RF sputtering in depositing the Zn-Sn-O thin films onto glass substrates at ambient conditions. This work places its main emphases on the electrical/optical features which are closely related to the combinations of processing variables. The electrical characterizations are performed using dc-based current-voltage characteristics and ac-based impedance spectroscopy. The optical constants, i.e., refractive index and extinction coefficient, are calculated through spectroscopic ellipsometry along with the estimation of bandgaps. The charge transport of the deposited ZTO thin films is based on electrons characteristic of n-type conduction. In addition to the basic electrical/optical information, the delicate manipulation of n-type conduction is indispensible in diversifying the industrial applications of the ZTO thin films as active devices in information and energy products. Ultimately, the electrical properties are correlated to the processing variables along with the underlying mechanism which largely determines the electrical and optical properties.

  • PDF

Characteristics of HOMO and LUMO Potentials by Altering Substituents: Computational and Electrochemical Determination

  • Kim, Young-Sung;Kim, Sung-Hoon;Kim, Tae-Kyung;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.41-46
    • /
    • 2008
  • Recently, computational calculation of molecular energy potentials and electrochemical reduction/oxidation behaviors are of very importance in view point of prediction of dye's properties such as energy levels and bandgaps of absorption. This can be influenced by their different constituents or substituents in chromogen molecules. Structural conformations and properties with computational modeling calculation are numerically simulated, which are fully or partly based on fundamental laws of physics. In addition, cyclic voltammetric measurement was used to obtain the experimental redox potential values, which were compared to the computed simulation values.

Recent Progress in Flexible Perovskite Solar Cell Development

  • Ren, Xiaodong;Jung, Hyun Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.325-336
    • /
    • 2018
  • Perovskite solar cells (PSCs) are a new class of photovoltaic devices, which have attracted significant attention due to their remarkable optoelectrical properties, including high absorption coefficients, high carrier mobilities, long carrier diffusion lengths, tunable bandgaps, low cost, and facile fabrication. PSCs have reached efficiencies of 22.70% and 18.36% on rigid fluorine-doped tin oxide and poly(ethylene terephthalate) substrates, respectively; these are comparable to those of single-crystal silicon and copper-indium-gallium-selenium solar cells. Over the past eight years, the photo conversion efficiency of PSCs has been significantly improved by device-architecture adjustments, and absorber and electron/hole transport layer optimization. Each layer is important for the performance of PSCs; hence, we discuss achievements in flexible perovskite solar cells (FPSCs), covering electron/hole-transport materials, electrode materials. We give a comprehensive overview of FPSCs and put forward suggestions for their further development.