• Title/Summary/Keyword: bamboo leaf

Search Result 81, Processing Time 0.036 seconds

Changes of Nutritional Components, Polyphenols, and Antioxidant Activities of Domestic Bamboo Tree (Sasa coreana Nakai) Leaves Fermented with Bacillus subtilis (Bacillus subtilis를 이용한 국내산 신이대 잎 발효에 따른 영양성분, 폴리페놀, 항산화능 변화)

  • Jo, Han-Gyo;Kim, Da-Song;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • Bamboo leaf has many nutritional and bioactive compounds such as polyphenols, and it can be used for various foods application. Fermentation is one of appropriate processes that can affect the nutrition, taste and flavor, and antioxidant activities of foods. In this study, a representative domestic bamboo tree (Sasa coreana Nakai) leaves were fermented by Bacillus subtilis KCCM 11315 and the changes of carbohydrates, minerals, amino acids, and phenolic compounds and antioxidant activities were investigated before and after fermentation. During the fermentation period, firstly, the leaf was softened and turned to brown. The constituent carbohydrates were slightly increased from $432.09{\pm}5.38mg/g$ to $458.42{\pm}7.39mg/g$, and free sugars decreased by 95% from $28.12{\pm}2.03mg/g$ to $1.4{\pm}0.14mg/g$. Mineral was $20987.5{\pm}345.1{\mu}g/mL$, which was slightly increased after the fermentation compared to $20804.1{\pm}364.6{\mu}g/mL$ before that. The total amino acids were increased to $73881.94{\pm}137.59mg/100g$ compared to $58464.51{\pm}109.12mg/100g$ before fermentation, and free amino acids decreased by more than 85% from $32782.67{\pm}92.49mg/100g$ to $4827.83{\pm}19.76mg/100g$. Total polyphenols content (TPC) increased from $25.51{\pm}1.04GAE^*mg/g$ to $35.34{\pm}0.91GAE^*mg/g$, and the total flavonoid content (TFC) increased to $80.57{\pm}0.22QE^*mg/g$ compared to $69.64{\pm}0.26QE^*mg/g$. The total catechin content (TCC) of TFC was decreased from $69.64{\pm}0.94mg/L$ to $58.23{\pm}0.76mg/L$. The DPPH radical $IC_{50}$ of bamboo leaves decreased to $2624.85{\pm}37.03{\mu}g/mL$ and the ABTS radical $IC_{50}$ of $187.26{\pm}4.78{\mu}g/mL$ was increased after the fermentation. These results could be used as essential nutritional data before developing processed food products using the bamboo leaf.

Comparison of Plant Growth and Morphological Characteristics Among the Korean Ginseng, the American Ginseng and the Bamboo Ginseng (고려인삼, 미국삼 및 죽절삼의 생육 및 형태적 특성 비교)

  • 정열영;이명구
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.147-153
    • /
    • 1998
  • An investigation was conducted to ascertain the basic information on characteristics of growth and morphological characters among the Korean (Panax. ginseng), the American (Panax. quinquefolium) and the Bamboo (Panax. japonicus) ginseng. In aerial parts growth of the ginseng species by age, The Korean ginseng and American ginseng's stem and leaf growth was alike in 2-4 years old, but growth cycle changed in 6 years old. The Korean ginseng was more vigorous than the American ginseng. The Korean ginseng roots were highly observed in ratio of red skin roots among three species, whereas The American ginseng roots were highly infected by root rot. It seems to be variable depending on growing stage and species. The Korean ginseng flowered about the middle of May, the American ginseng early June, and the Bamboo ginseng was late of May, The berry color of the ginseng species was observed, The Korean and American ginseng's mature berry color was red, The Bamboo ginseng's berry was three type of color and shape. In root characteristics of the seedling, Korean (p. ginseng), American (p. quinquefolium) ginseng's root shape was similarity in type, the bamboo ginseng showed different type, which root length and root weight was smaller than those of ginseng. In morphological characters of Leaf surface, pollen, and stoma, the Korean ginseng and American ginseng had crystal rosette on epidermis cell, but the Bamboo ginseng didn't has crystal rosette. Pollen shape observed tricolpate pollen and size was media type among the ginseng species, and also guard cell was anomocytic type, which were observed by scanning electronic microscope.

  • PDF

Physical Properties of Dough with Bamboo Leaf Powder (죽엽 분말을 첨가한 반죽의 물리적 특성)

  • Hwang, Su-Jung
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.517-526
    • /
    • 2011
  • The physical properties of dough with different levels (2, 4, 6, and 8%) of bamboo leaf powder were inverstigated. The bamboo leaf powder had a moisture content of 5.15%, a crude protein content of 10.48%, a crude fat content of 5.21%, a crude fiber content of 22.74%, and a crude ash content of 17.63%. The following parameters showed significant differences with the increase in the amount of bamboo leaf powder added. The gelatinization degree measured by a rapid visco-analyzer increased with the increase in the powder amount added. In the values of the farinogram parameter for dough consistency, the elasticity of the dough increased with the increase in the powder amount added. The alveogram values showed a similar tendency as those of the farinogram in terms of elasticity, absorption rate, absorption time and stability. In the rheofermentometer analysis, the volume decreased with the increase in the powder amount added, but no significant difference was found at up to 4% powder amount addition, suggesting that the about 2% and up to 4% powder amount addition is moderate.

Nutrient Distribution of Culm, Branches and Leaf in Phyllostachys bambusoides and Phyllostachys nigra var. nenosis (왕대와 솜대의 줄기, 가지, 잎에 양분 분포)

  • Park, Seong-Wan;Baek, Gyeongwon;Cho, Hyun-Seo;Yoo, Byung Oh;Jung, Su Young;Lee, Kwang Soo;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.388-396
    • /
    • 2017
  • This study was carried out to determine effects of bamboo species on the distribution of nutrients in aboveground biomass of Phyllostachys bambusoides and Phyllostachys nigra var. nenosis, Damyanggun, Korea. The study site was established around 40-year-ago to produce bamboo culm and edible shoot production. Total 28 bamboos (14 P. bambusoides and 14 P. nigra var. nenosis) were cut to measure nutrient concentration of each bamboo component, such as culm, branches and leaf. Magnesium concentration in each bamboo component was significantly higher in the P. bambusoides than in the P. nigra var. nenosis. Nutrient concentrations except for calcium were significantly higher in the current-year-old bamboos than in the > 1-year-old bamboos. The nutrient concentration in leaf was generally highest in carbon, followed by potassium or nitrogen, phosphorus, calcium or magnesium. Total nutrient content in each bamboo component was significantly higher in the P. bambusoides than in the P. nigra var. nenosis. The nutrient content of bamboo biomass was the highest in carbon, followed by potassium, nitrogen, phosphorus, magnesium and calcium. The results indicate that P. bambusoides uptakes more nutrients compared with P. nigra var. nenosis during growth development.

A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

  • Choi, Sunga;Park, Myoung Soo;Lee, Yu Ran;Lee, Young Chul;Kim, Tae Woo;Do, Seon-Gil;Kim, Dong Seon;Jeon, Byeong Hwa
    • Nutrition Research and Practice
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-${\alpha}$)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 ${\mu}g/ml$ to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-${\alpha}$-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-${\alpha}$-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-${\alpha}$-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis.

Effect of Bamboo (Pseudosasa japonica Makino)Leaves on the Physicochemical Properties of Dongchimi (대나무(이대)잎이 동치미의 발효 중 이화학적 특성에 미치는 영향)

  • 김미정;장명숙
    • Korean journal of food and cookery science
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of bamboo(Idae) leaves on the taste and preservation of Dongchimi. Dongchimi was prepared by the method described in the literatures and fermented at 10$^{\circ}C$ for 75 days. The amounts of bamboo leaves used to cover the Donchimi was 1, 3, 5 and 7% of radish weight. Total vitamin C content increased gradually in the initial stage of the fermentation periods, and then it decreased gradually. Regardless of the amount of bamboo leves, the reducing sugar content increased gradually from the initial stage of fermentation increased rapidly after 8 days of fermentation. As the amount of bamboo leaves increased, the reducing sugar content was retained longer, which reflected the retardation of Dongchimi fermentation. The free amino acid contents in all of the Dongchimi samples were in order of arginine > glutaric acid > aspartic acid > alanine at the initial period of fermentation, but the order changed to arginine > alanine > glutamic acid > valine as fermentation proceeded over 23 days. Among the five non-volatile organic acids identified, the levels of malic acid and citric acid were decreased during fermentation, while those of lactic acid, fumaric acid, and succinic acid were increased. There was a significant increase in lactic acid, succinic acid, malic acid, and citric acid contents during fermentation. The content of water soluble pectin(WSP) was higher than other pectins at the initial stages, but the content of WSP decreased as fermentation proceeded.

  • PDF

Comparisons of Nutrient Concentration of Leaves, Roots, and Soils in Three Bamboo Stands

  • Baek, Gyeongwon;Yoon, Jun-Hyuck;Bae, Eun Ji;Lee, Jihyun;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.108-114
    • /
    • 2022
  • In bamboo, the nutrient status of tissues and associated soil is an important indicator of nutrient uptake by various bamboo species. In this study, the nutrient concentrations of leaves, roots, and mineral soil at 0-10 cm depths were examined in three bamboo stands [Phyllostachys bambusoides S ieb. et Zucc, Phyllostachys nigra var. henonis Stapf ex. Rendle, and Phyllostachys pubescens (Mazel) Ohwi] at a broad regional scale in southern Korea. In the three bamboo species, species-specific differences were observed in the carbon (C) and calcium (Ca) concentrations of leaves and in the nitrogen (N) and magnesium (Mg) concentrations of roots. Ca concentrations in leaves were significantly higher in P. bambusoides (11.94 g Ca kg-1) than in P. pubescens (7.83 g Ca kg-1), whereas potassium (K) concentrations were lowest in P. bambusoides among the three bamboo species. N concentrations in the roots were significantly lower in P. pubescens (5.23 g N kg-1) than in P. nigra var. henonis (7.72 g N kg-1). In contrast to bamboo tissues, soil nutrients, such as total N, organic C, exchangeable Ca2+, and Mg2+, did not differ significantly among the bamboo species. These results suggest that species-specific practices will be required for nutrient management of bamboo stands because nutrient concentrations vary considerably in the tissues of the three studied species.

Synergistic combination effect of anti-obesity in the extracts of Phyllostachys pubescence Mael and Scutellaria baicalensis Georgi (죽엽(竹葉)과 황금(黃芩) 복합물의 항비만 효과)

  • Kang, Young Min;Kim, Seung-Hyung;Lee, Young-Cheol;Kim, Ho Kyoung;Kim, Dong-Seon
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.7-13
    • /
    • 2014
  • Objectives : Anti-obesity drugs that have been developed so far have limited efficacies and considerable adverse effects affecting tolerability and safety. Therefore, most anti-obesity durgs have been withdrawn. We tried to develop anti-obesity agent by combinations from herbs that are used in food ingredients as well as in traditional medicines. Methods : The 80% (v/v) ethanol extracts from Bamboo (Phyllostachys pubescence) leaf (BL) and Scutellaria baicalensis (SB) and their 1:1 combination (BLSB) was evaluated on high fat diet induced obese mice compared to Omega-3 as a positive control. The mice were divided into six groups (n=5), one group fed a normal diet (ND), and the others fed a high fat diets for eight weeks. Two weeks after starting feeding the diets, the high fat diet groups were orally administered vehicle and Omega-3, BL, SB, and BLSB at dosage of 200 mg/kg/day for six weeks. All groups were assayed for body weights, food efficiency ratio, blood biochemistry parameters, and organic tissue weights. Results : BLSB group showed significant reductions in body weight gain and fat weights of liver and epididymal adipose tissue compared to BL or SB alone as well as control. Total-cholesterol and LDL-cholesterol levels significantly decreased, and HDL-cholesterol level increased. In liver tissue, macrovesicular steaotisis was remarkably improved and its fat cell size was also significantly decreased. Conclusions : These results suggested that a combination preparation of bamboo leaf and S. baicalensis has anti-obesity effect and have synergistic effect compared to bamboo leaf or S. baicalesis.

Photoprotective Effect of Bamboo (Phyllostachys nigra var. henenis Strapf) Leaf Extract against Ultraviolet Radiation-induced Chronic Skin Damage in the Hairless Mouse (자외선 조사 마우스에서 만성 피부손상에 대한 분죽(Phyllostachys nigra var. henenis Strapf)잎 추출물의 효과)

  • Byeon, Jeong-Soo;Lee, Hae-June;Moon, Changjong;Kim, Jong Choon;Jo, Sung Kee;Jang, Jong Sik;Kim, Tae Hwan;Kim, Sung-Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • To evaluate the ability of Bamboo (Phyllostachys nigra var. henenis Strapf) leaf extract (BL) to protect the skin from photodamage, the gross and microscopic changes in the skin of hairless mice and BL-treated mice exposed chronically to ultraviolet (UV) were examined. The skin of the UV-irradiated mice showed characteristic signs of photoaging, such as deep wrinkles across the back, increased epidermal thickeness, numerous cell infiltration, and many enlarged keratinizing cysts. BL-treated mice showed a significantly decreased wrinkling score and lack of proliferation of cysts. By the 22nd week, 88.9% (i.p. with saline) or 60.0% (topical administration with cream base) of the UV-irradiated mice developed at least one tumor. BL delayed tumor onset significantly. BL (i.p.) was also effective in reducing the occurrence of UV radiation-induced skin tumors and reduced the number of tumors per mouse. After 22 weeks of treatment, 37.5% (i.p.) of the mice treated with BL were tumor-free. Tumor multiplicity was reduced by 81.2% (i.p.) in the BL treated groups. It is noted that skin that is chronically exposed to UV is subject to photoaging and photocarcinogenesis and regular use of BL would prevent these photodamaging effects of UV.