• Title/Summary/Keyword: ball

Search Result 4,685, Processing Time 0.029 seconds

Effect of Ball-milling on Hydrogen-reduction Behavior of WO3-CuO (WO3-CuO의 수소환원거동에 미치는 볼 밀링의 영향)

  • Kim, Dae-Gun;Shim, Woo-Seok;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.631-634
    • /
    • 2003
  • To fabricate W-Cu nanocomposite powder, $WO_3$-CuO powder mixture was high-energetically ball-milled and subsequently hydrogen-reduced. The effect of ball-milling on the hydrogen-reduction behavior of$ WO_3$-CuO was investigated with non-isothermal hygrometric analysis during hydrogen-reduction. Increasing the ball-milling time, the reduction peak temperatures of humidity curves were shifted to low temperature. It was considered that the reduction temperature should be decreased because the specific surface area of each oxide considerably increased with increasing the ball-milling time. In case of ball-milling for 0 h, $WO_3$and CuO were independently hydrogen-reduced and W particles were nucleated on the surface of Cu adjacent to W by CVT. However, in case of ball-milling for 50 h, the aggregates of about 200-300 nm were observed. W particles of size below 30-50 nm were homogeneously distributed with Cu in the aggregates.

Construction of Precision Measurement Interferometer for Standard Ball Diameter (표준구직경 정밀측정 간섭계 제작)

  • Chang, Kyung-Ho;Lee, Yong-Jae;Suh, Ho-Suhng;Do, Jin-Yeol;Kang, Si-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 1999
  • We constructed an interferometer for precise measurement of the ball diameter, and measured the diameter of steel ball with a diameter of 78 mm. The interferometer was consisted of etalon to instal ball between two parallel plates and placed on the monolithic flexure to be moved parallel. The ball diameter was calculated from phase difference of one pair of signals interfered between the both sides of ball and two parallel plates, and the signals was observed by photodetectors with scanning the etalon. The results showed that the diameter of steel ball was 78.1893544 mm and measurement uncertainty of 29 nm in confidence level of 95.5%.

  • PDF

Study of ball bearing fatigue damage using vibration analysis: application to thrust ball bearings

  • Yessine, Toumi M.;Fabrice, Bolaers;Fabien, Bogard;Sebastien, Murer
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.325-336
    • /
    • 2015
  • This paper presents a study based on the damage due to the fatigue life of thrust ball bearings using vibratory analysis. The main contribution of this work lies in establishing a relation between modal damping and the rolling contact fatigue damage of the thrust ball bearing. Time domain signals and frequency spectra are extracted from both static and dynamic experiments. The first part of this research consists in measuring the damping of damaged thrust ball bearings using impact hammer characterization tests. In a second part, indented components representing spalled bearings are studied to determine the evolution of damping values in real-time vibration spectra using the random decrement method. Dynamic results, in good agreement with static tests, show that damping varies depending on the component's damage state. Therefore, the method detailed in this work will offer a possible technique to estimate the thrust ball bearing fatigue damage variation in presence of spalling.

Changes of the Kinetic Energy of Putter Head and Ball Movements during the Process of Impact (퍼팅 스트로크의 충돌과정에서 나타난 퍼터헤드와 볼의 운동에너지 변화 분석)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • The purpose of this study was to analyze the kinetic energy of putter head and ball movements during the process of impact. Highly skilled 5 golfers(less than 1 handicap) participated in this study and the target distance was 3 m. Movements of ball and putter head were recorded with 2 VHS video cameras(60 Hz, 1/500 s shutter speed). Small control object($18.5{\times}18.5{\times}78.5\;cm$) was used in this sdtuldy. Analyzing the process of impact, putter was digitized before 0.0835 s and after 0.0835 s of impact. Ball was digitized 0.1336 s after impact. The results showed that the maximum speed was appeared at Impact and prolonged for a while. Contact point of the club head was within 0.7 cm to the z axis. After contacting the club head, the ball was moved above the ground level(slide) and returned to the ground with sliding and rolling. After contacting the ground, the speed of ball was relied on the surface of the ground. During impact, 70% of kinetic energy of club head has been transferred to the ball.

An Experimental Study on the Dimensional Error in Ball End Milling (볼 엔드밀 가공에서 치수오차에 관한 실험적 연구)

  • 심기중;유종선;정진용;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.62-69
    • /
    • 2004
  • This paper presents an experimental study on the dimensional error in ball-end milling. In the 3D free-formed surface machining using ball-end milling, while machining conditions are varied due to the Z component of the feed and existing hemisphere part of the ball-end mill, the mechanics of ball-end milling are complicated. In the finishing, most of cutting is performed the ball part of the cutter and the machined surface are required the high quality. But the dimensional errors in the ball-end milling are inevitably caused by tool deflection, tool wear, thermal effect and machine tool errors and so on. Among these factors, the most significant one of dimensional error is usually known as tool deflection. Tool deflection is related to the instantaneous horizontal cutting force and varied the finishing cutting path. It lead to decrease cutting area, thus resulting cutting forces but the dimensional precision surface could not be obtained. So the machining experiments are conducted fur dimensional error investigation and these results may be used for decrease dimensional errors in practice.

Immediate Effects of Release Ball Massage and Self-stretching Exercise on Hamstring's Temperature, Range of Motion and Strength in 20's Women

  • Jeong, Younghun;Park, Jihwan;Yu, Jin;Lee, Sunyeong;Ha, Jihee;Choo, Yeonki;Oh, Taeyoung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.1
    • /
    • pp.1739-1745
    • /
    • 2019
  • Background: There have been many studies on self-myofascial release (SMR) stretching, but there are few comparative studies on the effects of massages using a release ball, which is a type of the SMR method. Objective: To investigate the immediate effects of release ball massage and self-stretching on proprioceptive sensory, hamstring's temperature, range of motion (ROM) muscle strength,. Design: Crossover study. Methods: Thirty women in 20's at S University in Busan voluntarily participated in the study. Participants were random to release ball group (n=15) or self-stretching group (n=15). Both groups performed 3 sets of exercises, stretching for 30 seconds and resting for 15 seconds in each position. The proprioceptive sensory, temperature of the hamstring muscle, ROM, and strength were measured before exercise, 5 minutes after exercise, and 30 minutes after exercise. Results: Release ball group showed significant differences in muscle length and temperature over time (p<.05). The comparison between two group over time showed significant differences in muscle length, temperature, and muscle strength (p<.05). Conclusions: These results demonstrate that release ball massage and self-stretching are beneficial for improving hamstring's temperature, ROM and muscle strength.

Reduction of energy demand for UF cross-flow membranes in MBR by sponge ball cleaning

  • Issa, Mohammad;Geissen, Sven-Uwe;Vogelpohl, Alfons
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2021
  • Sponge ball cleaning can generate an abrasion effect, which leads to an attractive increasing in both permeate flux and membrane rejection. The aim of this study was to investigate the influence of the daily sponge ball cleaning (SBC) on the performance of different UF cross-flow membrane modules integrated with a bioreactor. Two 1"-membrane modules and one 1/2"-membrane module were tested. The parameters measured and controlled are temperature, pH, viscosity, particle size, dissolved organic carbon (DOC), total suspended solids (TSS), and permeate flux. The permeate flux could be improved by 60%, for some modules, after 11 days of daily sponge ball cleaning at a transmembrane pressure of 350 kPa and a flow velocity of 4 m/s. Rejection values of all tested modules were improved by 10%. The highest permeate flux of 195 L/㎡.h was achieved using a 1"-membrane module with the aid of its negatively charged membrane material and the daily sponge ball cleaning. In addition, the enhancement in the permeate flux caused by daily sponge ball cleaning improved the energy specific demand for all tested modules. The negatively charged membrane showed the lowest energy specific demand of 1.31 kWh/㎥ in combination with the highest flux, which is a very competitive result.

Material and Structure Optimization of Substrate Support for Improving CVD Equipment Up Time (CVD 장비 Up Time 향상을 위한 기판 지지대의 재질 및 구조 최적화)

  • Woo, Ram;Kim, Won Kyung
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.670-676
    • /
    • 2019
  • We study substrate support structures and materials to improve uptime and shorten preventive maintenance cycles for chemical vapor deposition equipment. In order to improve the rolling of the substrate support, the bushing device adopts a ball transfer method in which a large ball and a small ball are mixed. When the main transfer ball of the bushing part of the substrate support contacts the substrate support, the small ball also rotates simultaneously with the rotation of the main ball, minimizing the resistance that can be generated during the vertical movement of the substrate support. As a result of the improvement, the glass substrate breakage rate is reduced by more than 90 ~ 95 %, and the equipment preventive maintenance and board support replacement cycles are extended four times or more, from once a month to more than four months, and the equipment uptime is at least 15 % improved. This study proposes an optimization method for substrate support structure and material improvement of chemical vapor deposition equipment.

An Experimental Study on the Applicability of Precious Slag Ball as Vertical Drains (풍쇄전로슬래그의 연직배수재 활용성에 관한 실험적 연구)

  • Kwon, Jeong-Geun;Im, Jong-Chul;Kim, Woo-Kyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.37-46
    • /
    • 2011
  • To investigate the applicability of Precious Slag Ball as the alternative material such as vertical drains, it is necessary to check the drainage effect of it in the field construction. In order to attain an successful design it is important to predict problems encountered in field construction. Accordingly, in this study the laboratory tests were executed under different conditions before applying of the field. 4 cases including Precious Slag Ball, sand+Precious Slag Ball, pack Precious Slag Ball and sand as vertical drains were conducted, and under the base of the laboratory tests the field test was executed and analyzed. By the upper results it is apposite to use Precious Slag Ball as vertical drains.

Comparison of the basic Aerodynamics between the World Cup Official Ball and Korean Soccer Balls (월드컵 공인구와 한국 축구 공인구 사이의 기초 공력특성 비교)

  • Sungchan Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.63-70
    • /
    • 2024
  • Objective: This study aims to compare the basic aerodynamic characteristics of the official Qatar World Cup soccer ball with those of the official Korean soccer balls. Method: In this study, wind tunnel experiments were conducted to compare the fundamental aerodynamic properties of two commonly used domestic soccer balls, the Star and Nassau, with the Al Rihla, the official ball of the 2022 Qatar World Cup. Results: The findings revealed that the Nassau soccer ball exhibited changes in aerodynamic characteristics depending on its orientation, particularly at low speeds (below 15 m/s), while the Al Rihla showed variations in aerodynamic characteristics at medium to high speeds (15 m/s to 35 m/s) based on its orientation. Furthermore, the results of lift and side force variations indicated that the Star soccer ball exhibited larger changes compared to other soccer balls, suggesting that it may exhibit the most irregular flight path during strong shots (around 30 m/s or approximately 100 km/h). However, there were no differences in aerodynamics observed among the soccer balls in the medium-speed range (20~25 m/s). Conclusion: The comparison of aerodynamics between the Korean soccer balls and the most recently used World Cup official ball showed that, while the Korean balls exhibited slightly greater changes in lift and side forces compared to the World Cup ball, there were no significant differences in most of the aerodynamic characteristics.