• 제목/요약/키워드: ball

Search Result 4,653, Processing Time 0.034 seconds

A Study on the Ball-Bar Artifact for the Volumetric Error Calibration of Machine Tools (Machine Tools 공간오차 분석을 위한 Bal1-bar Artifact 연구)

  • Lee, Eung-Suk;Koo, Sang-Seo;Park, Dal-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.986-991
    • /
    • 2004
  • For volumetric error measurement and calibration for machine tools, manufacturing machine or coordinate measuring machine (CMM), are studied using a Ball-bar artifact. A design of the Ball-bar is suggested manufactured by Invar, which is a low thermal expansion material, and precision steel balls. The uncertainty for the artifact method is discussed. A method of the Ball-bar artifact for obtaining 3-D position errors in CMM is proposed. The method of error vector measurement is shown using the Ball-bar artifact. Finally, the volumetric error is calculated from the error vectors and it can be used for Pitch error compensation in conventional NC machine and 3-D position Error map for calibration of NC machine tools.

A Study on the Life of Ball Screws (볼나사의 수명에 관한 연구)

  • 김욱배;박철우;이상조;박충서
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.894-899
    • /
    • 1997
  • Genernally, the life of ball screws is presented in catalogue of domestic manufacturer by the name of dynamic load capacity. But, systematic experiment method and reliable data are not secured, even now. Data presented in catalogue is obtained at already established life expression of ball-bearing. Therefore studying on the life of ball screws, characteristic qualities of ball screw must be considered. We studied systematic experiment method and by this do experiments, obtained data. This paper present above items, and expression of life prediction by experiment results.

  • PDF

NRRO Analysis of a HDD Spindle Ball Bearing using Measured Geometric Imperfection (실측형상오차를 이용한 HDD 스핀들용 볼베어링의 NRRO 해석)

  • Kim, Young-Cheol;Park, Sang-Kyu;Yoon, Ki-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.341.1-341
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(the non-repeatable run-out) for a ball bearing with geometric imperfection. The 3DOF dynamic analysis of a ball bearing using the Runge-Kutta method is performed to calculate the displacement of shaft center. Frequency and magnitude characteristics of radial and axial vibrations are investigated. The ball form errors of the ball, the inner race, and the outer race in a HDD spindle ball bearing are precisely measured. (omitted)

  • PDF

The Effect of Milling Time and Speed on the Particle Size of Ibuprofen in the Cryogenic Ball Milling Process (극저온 볼 밀링 공정시 밀링시간 및 속도가 Ibuprofen분말의 입자 크기에 미치는 영향)

  • Cho Hyun Kab;Paik Young Nam;Rhee Kyong Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1022-1027
    • /
    • 2005
  • In this study, ball milling process was applied to reduce the particle size of bio-material down to submicron size. The material used was Ibuprofen. The ball milling was performed at low temperature of about $-180^{\circ}C$. The effect of processing conditions (milling time, milling speed) on the particle size was determined. The results showed that the degree of crystallite of Ibuprofen was slightly reduced by the ball milling process. The results also showed that the size of Ibuprofen was significantly reduced by the ball milling process. The effect of milling time was significant within the milling time of six hours while it was small thereafter.

A Study on Structure of Support Ball Screw and Arrangement of Combined Bearing (볼나사 지지 구조와 베어링 조합 배열에 관한 연구)

  • 홍성오;정성택;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.51-56
    • /
    • 2002
  • In order to achieve high precision machine tools, Performance enhancement of feed drive systems is required. One of the important technical issues is how to decrease thermal expansion of ball screw in proportion to the increase of machining speed. When measuring force of stretch of ball screw, since not only actual expansion and the value of bending have to be considered, it is impossible to define the exact value of expansion. In addition, support bearings of ball screw gain considerable force in axial direction. It also generates thermal expansion on the ball screw, and deteriorates the performances of the hearings. In conclusion, it is impossible to give the pretension enough to absorb all the elongation due to thermal expansion generated during machine is running. If given bed column and saddle are all bent to chance machine accuracy, and the support bearings of ball screw is damaged.

Measuring The Speed of The Golf Ball after Impact (임팩트 후 골프공의 속도 측정)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Kim, Hee-Ae;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.129-131
    • /
    • 2013
  • In this paper, a golf club head strikes the golf ball moves at a constant speed. Then the head of a golf club moves at a constant speed in the same direction. Then calculate the speed of the golf ball to hit a golf ball flying. It calculate the speed of the golf ball is different for each speed before hitting the golf ball.

  • PDF

Non Linear Finite Element Analyses of Ceramic/Ceramic Pairs of Total Hip Replacements Using High Trauma-Like Loads (고응력 외상에의한 고관절용 세라믹/세라믹 쌍의 비선형 유한요소법 분석)

  • Karyo, Daniel;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.179-180
    • /
    • 2005
  • Non linear finite element analyses were performed in various configurations of stem-ball head. High stresses were found for the cases when the stem tended to penetrate less into the ball head. An upgraded design of the cone may improve the loading of the ball head to resist trauma-like loading more effectively than manipulating the ball diameter. When the surgeon needs to use small ball heads (i.e. 22 mm), the use of zirconia seems to be appropriate also. After simulating a trauma like loading of the materials, it was found that the deepness of the cone to locate the stem is of major importance for the performance of the device. Further work, considering more sizes for the cone design should be performed in order to determine an optimal depth for the cone in relation to the diameter of the ball head. Also the simulation of contacts pairs including polyethylene and CoCr is important for further research.

  • PDF

Effect of Ball-Milling on the Superconducting Properties of C and C-Based Compound Doped $MgB_2$ (탄소 및 탄소화합물이 도핑된 $MgB_2$ 초전도체의 볼밀링 효과)

  • Ahn, Jung-Ho;Jang, Min-Kyu;Oh, Sang-Jun
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • We have examined the effect of ball-milling on the superconducting properties of $MgB_2$ doped with C. The ball-milling of pre-reacted $MgB_2$ powder was carried out in dry or wet state using C or diethylenetriamine ($C_{4}H_{13}N_3$) as additives. The diethylenetriamine, whose chemical formula contains no oxygen, was chosen to avoid an excess oxidation during doping. The superconducting transition temperature (Tc) of the ball-milled or doped $MgB_2$ powders was only slightly smaller than that of undoped $MgB_2$. The critical current density (Jc) of the highly ball-milled $MgB_2$ was higher than that of C-doped $MgB_2$. The addition of diethylenetriamine was detrimental to Jc, although Tc was almost unchanged.

  • PDF

The Effect of Oxide Layer Formed on TiN Coated Ball and Steel Disk on Friction Characteristics in Various Sliding Conditions (미끄럼조건에 따라 TiN 코팅볼과 스틸디스크에 형성되는 산화막이 마찰특성에 미치는 영향)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.459-466
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk on friction characteristics in various sliding conditions were investigated. AISI52100 steel ball was used for the substrate of coated ball specimens, which were prepared by depositing TiN coating with 1(m in coating thickness. AISI1045 steel was used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. From the test results, the frictional characteristic between the two materials was predominated by iron oxide layer that formed on wear tract of counter-body and this layer caused friction transition and high friction. And the adhesive wear occurred from steel disk to TiN coated ball caused the formation of oxide layer on counter parts between the two materials.

Practical Ultraprecision Positioning of a Ball Screw Mechanism

  • Sato, Kaiji;Maeda, Guilherme Jorge
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.44-49
    • /
    • 2008
  • This paper describes the problem of ultraprecision positioning with a ball screw mechanism in the microdynamic range, along with its solution. We compared the characteristics of two ball screw mechanisms with different table masses. The experimental results showed that the vibration resulting from the low stiffness of the ball screw degraded the positioning performance in the microdynamic range for the heavyweight mechanism. The proposed nominal characteristic trajectory following (NCTF) controller was designed for ultra precision positioning of the ball screw mechanism. The basic NCTF control system achieved ultra precision positioning performance with the lightweight mechanism, but not with the heavyweight mechanism. A conditional notch filter was added to the NCTF controller to overcome this problem. Despite the differences in payload and friction, both mechanisms then showed similar positioning performance, demonstrating the high robustness and effectiveness of the improved NCTF controller with the conditional notch filter. The experimental results demonstrated that the improved NCTF control system with the conditional notch filter achieved ultra precision positioning with a positioning accuracy of better than 10 nm, independent of the reference step input height.