• Title/Summary/Keyword: balanced tree

Search Result 53, Processing Time 0.028 seconds

Balanced Binary Search Using Prefix Vector for IP Address Lookup (프리픽스 벡터를 사용한 균형 이진 IP 주소 검색 구조)

  • Kim, Hyeong-Gee;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.285-295
    • /
    • 2008
  • Internet routers perform packet forwarding which determines a next hop for each incoming packet using the packet's destination IP address. IP address lookup becomes one of the major challenges because it should be performed in wire-speed for every incoming packet under the circumstance of the advancement in link technologies and the growth of the number of the Internet users. Many binary search algorithms have been proposed for fast IP address lookup. However, tree-based binary search algorithms are usually unbalanced, and they do not provide very good search performance. Even for binary search algorithms providing balanced search, they have drawbacks requiring prefix duplication. In this paper, a new binary search algorithm which provides the balanced binary search and the number of its entries is much less than the number of original prefixes. This is possible because of composing the binary search tree only with disjoint prefixes of the prefix set. Each node has a prefix vector that has the prefix nesting information. The number of memory accesses of the proposed algorithm becomes much less than that of prior binary search algorithms, and hence its performance for IP address lookup is considerably improved.

A Hierarchical Contact Searching Algorithm in Sheet Forming Analysis (박판성형공정해석에서의 계층적 접촉탐색 알고리즘 적용)

  • 김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.22-25
    • /
    • 1999
  • A dynamic explicit finite element code for simulating sheet forming processes has been developed The code utilises the discrete Kirchhoff shell element and contact force is treated by a conventional penalty method. In order to reduce the computational cost a new and robust contact searching algorithm has been developed and implemented into the code. in the method a hierarchical structure of tool segments called a tree structure is built for each tool at the initial stage of the analysis Tree is built in a way to divide a trunk to 8 sub-trunk 2 in each direction until the lowest level of the tree(leaf) contains exactly one segment of the tool. In order to have a well-balanced tree each box on each sub level contains one eighth of the segments. Then at each time step contact line from a node comes out of the surface of the tool. Simulation of various sheet forming processes were performed to verify the validity of the developed code with main focus on he usefulness of the developed contact searching algorithm.

  • PDF

Quantitative approach to analyze searching efficiencies varying degrees of imbalance in a binary search tree (수량적 접근 방법에 의한 이진 검색 트리 불균형도에 따른 검색 성능 비교 분석)

  • 김숙영
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.2
    • /
    • pp.235-242
    • /
    • 2002
  • To minimize restructuring cost of a tree, experiments were conducted to collect quantitative information of searching efficiencies varying degrees of imbalance in a binary search tree. Degrees of tree imbalance were measured by a balance factor, an absolute value of height difference of left subtree and right subtree in a binary search tree. The average number of comparisons increased (p<0.01), and searching efficiency of O(n) was more appropriate rather than O(logn), as degrees of imbalance in a binary search tree deteriorated. However, there were no significant differences of searching efficiencies in height balanced trees and trees with subtrees to have height 3 less than the other (p>0.05). Therefore, the findings would be applicable to maintain searching efficiency of a software with a binary search tree.

  • PDF

High-speed W Address Lookup using Balanced Multi-way Trees (균형 다중 트리를 이용한 고속 IP 어드레스 검색 기법)

  • Kim, Won-Iung;Lee, Bo-Mi;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.427-432
    • /
    • 2005
  • Packet arrival rates in internet routers have been dramatically increased due to the advance of link technologies, and hence wire-speed packet processing in Internet routers becomes more challenging. As IP address lookup is one of the most essential functions for packet processing, algorithm and architectures for efficient IP address lookup have been widely studied. In this paper, we Propose an efficient I address lookup architecture which shows yeW good Performance in search speed while requires a single small-size memory The proposed architecture is based on multi-way tree structure which performs comparisons of multiple prefixes by one memory access. Performance evaluation results show that the proposed architecture requires a 280kByte SRAM to store about 40000 prefix samples and an address lookup is achieved by 5.9 memory accesses in average.

Directory Cache Coherence Scheme using the Number-Balanced Binary Tree (수 평형 이진트리를 이용한 디렉토리 캐쉬 일관성 유지 기법)

  • Seo, Dae-Wha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.3
    • /
    • pp.821-830
    • /
    • 1997
  • The directory-based cache coherence scheme is an attractive approach to solve the caceh coherence problem in a large-scale shared-memory multiprocessor.However, the exsting directory-based schemes have some problens such as the enormous storage overhead for a directory, the long invalidation latency, the heavy network condes-tion, and the low scalability.For resolving these problems, we propose a new directroy- based caceh coherence scheme which is suitable for building scalable, shred-memory multiprocessors.In this scheme, each directory en-try ofr a given memory block is a number-balanced binaty tree(NBBT) stucture.The NBBT has several proper-ties to effciently maintain the directory for the cache consistency such that the shape is unique, the maximum depth is [log$_2$n], and the tree has the minimum number of leaf nodes among the binarry tree with n nodes.Therefore, this scheme can reduce the storage overhead, the network traffic, and the inbalidation latency and can ensutr the high- scalability the large-scale shared-memory multiprocessors.

  • PDF

Group Key Management using (2,4)-Tree ((2,4)-트리를 이용한 그룹키 관리)

  • 조태남;이상호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.4
    • /
    • pp.77-89
    • /
    • 2001
  • Recently, with the explosive growth of communication technologies, group oriented services such as teleconference and multi-player game are increasing. Access control to information is handled by secret communications with group keys shared among members, and efficient updating of group keys is vital to such secret communications of large and dynamic groups. In this paper, we employ (2,4)-tree as a key tree, which is one of height balanced trees, to reduce the number of key updates caused by join or leave of members. Especially, we use CBT(Core Based Tree) to gather network configurations of group members and reflect this information to key tree structure to update group keys efficiently when splitting or merging of subgroups occurs by network failure or recovery.

A New Low-Skew Clock Network Design Method (새로운 낮은 스큐의 클락 분배망 설계 방법)

  • 이성철;신현철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.43-50
    • /
    • 2004
  • The clock skew is one of the major constraints for high-speed operation of synchronous integrated circuits. In this paper, we propose a hierarchical partitioning based clock network design algorithm called Advanced Clock Tree Generation (ACTG). Especially new effective partitioning and refinement techniques have been developed in which the capacitance and edge length to each sink are considered from the early stage of clock design. Hierarchical structures obtained by parhtioning and refinement are utilized for balanced clock routing. We use zero skew routing in which Elmore delay model is used to estimate the delay. An overlap avoidance routing algorithm for clock tree generation is proposed. Experimental results show significant improvement over conventional methods.

A Case Study on the Technology Tree Methodology of Energy R&D (에너지연구개발(R&D)위한 기술계통도(Technology Tree) 기획방법론 활용 사례 - 에너지저장 기술 중심으로)

  • Kang, Geun Young;Yun, Ga-Hye;Kim, Donghwan
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.40-50
    • /
    • 2013
  • Government spending on research and development increased continuously is much more important to decision-making methodology for rational investment. Rely on a group of minority experts in the application of a general methodology, a tipping effect occur in specific technology field or difficult balanced procedure and objective control to maintain. This paper presents a qualitative-quantitative methodology to avoid such risks by utilizing Technology-Tree pertaining to energy R&D planning of the government Energy Technology Development program. Especially Energy Technology Development program "energy storage system" is applied to the analysis of Technology-Tree, mapping and analysis of existing government-supported projects during the recent 5 years, is derived essential missing elements of the technology value chain. This study suggests that significant evidence is utilized for improving efficiency of government R&D budget considering the importance of technology, domestic research-based and so forth, could be used to implement the R&D project planning.

Distributed Mutual Exclusion Algorithm for Maintaining Tree-Height Balance in Mobile Computing Environments (이동 컴퓨팅 환경에서 트리 높이의 균형을 유지하는 상호 배제 알고리즘)

  • Kim, Hyeong-Sik;Eom, Yeong-Ik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.10
    • /
    • pp.1206-1216
    • /
    • 1999
  • 이동 호스트란 시간과 공간의 제약 없이 필요한 기능을 수행하고, 또한 원하는 정보에 접근할 수 있는 휴대용 컴퓨터를 일컫는다. 이동 컴퓨팅 환경이란 이러한 이동 호스트들을 지원할 수 있도록 구성된 분산 환경이다. 따라서 이동 컴퓨팅 환경에서의 분산 알고리즘은 정적 호스트만을 고려한 기존의 분산 환경에서와는 다르게 이동 호스트의 여러 가지 특성들을 고려하여 제안되어야 한다. 즉, 이동 컴퓨팅 환경의 도래로 인하여 이동성과 휴대성, 그리고 무선 통신과 같은 특성들을 고려한 새로운 분산 상호 배제 알고리즘이 필요하다. 이제까지 이동 컴퓨팅 환경에서의 상호 배제 알고리즘은 토큰 링 구조에 기반을 두고 설계되었다. 토큰 링 구조는 이동 호스트들의 위치를 유지하기 위하여 높은 비용을 필요로 하는 단점을 가지고 있다. 본 논문에서는 균형 높이 트리(height-balanced tree)라는 새로운 모형을 제안함으로써 정적 분산 환경과 이동 분산 환경이 혼합된 환경에서 상호 배제 비용을 감소시킬 수 있는 새로운 알고리즘을 제안하며, 각 경우에 있어서의 비용을 산출하고 평가한다.Abstract The mobile host is a potable computer that carries out necessary functions and has the ability to access desirable informations without any constraints in time and space. Mobile computing environment is a distributed environment that is organized to support such mobile hosts. In that environment, distributed algorithms of which environment not only with static hosts but with mobile host's several properties should be proposed. With the emergence of mobile computing environments, a new distributed mutual exclusion method should be required to consider properties mobile computing system such as mobility, portability, and wireless communication. Until now, distributed mutual exclusion methods for mobile computing environments are designed based on a token ring structure, which have the drawbacks of requiring high costs in order to locate mobile hosts. In this paper, we propose a distributed mutual exclusion method that can reduce such costs by structuring the entire system as a height-balanced tree for static distributed networks and for networks with mobile hosts. We evaluated the operation costs in each case.

J-Tree: An Efficient Index using User Searching Patterns for Large Scale Data (J-tree : 사용자의 검색패턴을 이용한 대용량 데이타를 위한 효율적인 색인)

  • Jang, Su-Min;Seo, Kwang-Seok;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • In recent years, with the development of portable terminals, various searching services on large data have been provided in portable terminals. In order to search large data, most applications for information retrieval use indexes such as B-trees or R-trees. However, only a small portion of the data set is accessed by users, and the access frequencies of each data are not uniform. The existing indexes such as B-trees or R-trees do not consider the properties of the skewed access patterns. And a cache stores the frequently accessed data for fast access in memory. But the size of memory used in the cache is restricted. In this paper, we propose a new index based on disk, called J-tree, which considers user's search patterns. The proposed index is a balanced tree which guarantees uniform searching time on all data. It also supports fast searching time on the frequently accessed data. Our experiments show the effectiveness of our proposed index under various settings.