• Title/Summary/Keyword: bainitic steel plates

Search Result 4, Processing Time 0.016 seconds

Effect of Chemical Compositions on Microstructure and Mechanical Properties of Base Metal and HAZ of Bainitic Steel Plates (베이나이트계 후판강의 모재 및 열영향부의 미세조직과 기계적 특성에 미치는 화학 조성의 영향)

  • Cho, Sung Kyu;Joo, Hyung Goun;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.211-220
    • /
    • 2019
  • In this study, three kinds of bainitic steel plates are manufactured by varying the chemical compositions and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room and low temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone (HAZ) specimens are fabricated by a simulation of welding processes, and the HAZ microstructure is analyzed. The base steel that has the lowest carbon equivalent has the highest volume fraction of acicular ferrite and the lowest volume fraction of secondary phases, so the strength is the lowest and the elongation is the highest. The Mo steel has a higher volume fraction of granular bainite and more secondary phases than the base steel, so the strength is high and the elongation is low. The CrNi steel has the highest volume fraction of the secondary phases, so the strength is the highest and elongation is the lowest. The tensile properties of the steels, namely, strength and elongation, have a linear correlation with the volume fraction of secondary phases. The Mo steel has the lowest Charpy impact energy at $-80^{\circ}C$ because of coarse granular bainite. In the Base-HAZ and Mo-HAZ specimens, the hardness increases as the volume fraction of martensite-austenite constituents increases. In the CrNi-HAZ specimen, however, hardness increases as the volume fraction of martensite and bainitic ferrite increases.

Effects of Alloying Elements and the Cooling Condition on the Microstructure, Tensile Properties, and Charpy Impact Properties of High-Strength Bainitic Steels (베이나이트계 고강도강의 합금원소와 냉각조건이 미세조직, 인장성질, 충격성질에 미치는 영향)

  • Sung, Hyo Kyung;Shin, Sang Yong;Hwang, Byoungchul;Lee, Chang Gil;Kim, Nack J.;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.798-806
    • /
    • 2010
  • The effects of alloying elements and the cooling condition on the microstructure, tensile properties, and Charpy impact properties of high-strength bainitic steel plates fabricated by a controlled rolling process were investigated in the present study. Eight kinds of steel plates were fabricated by varying C, Cr, and Nb additions under two different cooling rates, and their microstructures and tensile and Charpy impact properties were evaluated. The microstructures present in the steels increased in the order of granular bainite, acicular ferrite, bainitic ferrite, and martensite as the carbon equivalent or cooling rate increased, which resulted in a decrease in the ductility and Charpy absorbed energy. The steels containing a considerable amount of bainitic ferrite or martensite showed very high strengths, together with good ductility and Charpy absorbed energy. In order to achieve the best combination of strength, ductility, and Charpy absorbed energy, granular bainite and acicular ferrite were properly included in the high-strength bainitic steels by controlling the carbon equivalent and cooling rate, while about 50 vol.% of bainitic ferrite or martensite was maintained to maintain the high strength.

Effect of Vanadium and Boron on Microstructure and Low Temperature Impact Toughness of Bainitic Steels (베이나이트강의 미세조직과 저온 충격 인성에 미치는 바나듐과 보론의 영향)

  • Huang, Yuanjiu;Lee, Hun;Cho, Sung Kyu;Seo, Jun Seok;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.139-149
    • /
    • 2021
  • In this study, three kinds of bainitic steels are fabricated by controlling the contents of vanadium and boron. High vanadium steel has a lot of carbides and nitrides, and so, during the cooling process, acicular ferrite is well formed. Carbides and nitrides develop fine grains by inhibiting grain growth. As a result, the low temperature Charpy absorbed energy of high vanadium steel is higher than that of low vanadium steel. In boron added steel, boron segregates at the prior austenite grain boundary, so that acicular ferrite formation occurs well during the cooling process. However, the granular bainite packet size of the boron added steel is larger than that of high vanadium steel because boron cannot effectively suppress grain growth. Therefore, the low temperature Charpy absorbed energy of the boron added steel is lower than that of the low vanadium steel. HAZ (heat affected zone) microstructure formation affects not only vanadium and boron but also the prior austenite grain size. In the HAZ specimen having large prior austenite grain size, acicular ferrite is formed inside the austenite, and granular bainite, bainitic ferrite, and martensite are also formed in a complex, resulting in a mixed acicular ferrite region with a high volume fraction. On the other hand, in the HAZ specimen having small prior austenite grain size, the volume fraction of the mixed acicular ferrite region is low because granular bainite and bainitic ferrite are coarse due to the large number of prior austenite grain boundaries.

Effect of Rolling Conditions on Microstructure and Mechanical Properties of Thick Steel Plates for Offshore Platforms (해양플랜트용 후판강의 미세조직과 기계적 특성에 미치는 압연 조건의 영향)

  • Kim, Jongchul;Suh, Yonhchan;Hwang, Sungdoo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.478-488
    • /
    • 2018
  • In this study, three kinds of steels are manufactured by varying the rolling conditions, and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone(HAZ) specimens are fabricated through the simulation of the welding process, and the HAZ microstructure is analyzed. The Charpy impact test of the HAZ specimens is performed at $-40^{\circ}C$ to investigate the low temperature HAZ toughness. The main microstructures of steels are quasi-polygonal ferrite and pearlite with fine grains. Because coarse granular bainite forms with an increasing finish rolling temperature, the strength decreases and elongation increases. In the steel with the lowest reduction ratio, coarse granular bainite forms. In the HAZ specimens, fine acicular ferrites are the main features of the microstructure. The volume fraction of coarse bainitic ferrite and granular bainite increases with an increasing finish rolling temperature. The Charpy impact energy at $-40^{\circ}C$ decreases with an increasing volume fraction of bainitic ferrite and granular bainite. In the HAZ specimen with the lowest reduction ratio, coarse bainitic ferrite and granular bainite forms and the Charpy impact energy at $-40^{\circ}C$ is the lowest.