• Title/Summary/Keyword: baffle

Search Result 498, Processing Time 0.029 seconds

A Numerical Study on the Basic Design of Scrubber for Marine Diesel Engines (선박 디젤기관 스크러버의 기초설계에 관한 수치적 연구)

  • Lee, Won-Ju;Kim, In-Su;Choi, Yong-Seok;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.549-557
    • /
    • 2017
  • Numerical studies have been carried out on scrubbers, which are after-treatment devices to satisfy strengthened emission regulations for sulfur dioxide and particulate matter. We investigated the problems with existing scrubbers through numerical analysis and designed and analyzed a new swirl-type scrubber that could solve these problems. As a result, with the swirl-type scrubber, exhaust gas formed a vortex in the lower part of the device, and some of this gas was released along the guide vane through the bottom surface. In this case, the pressure gradient in the vertical direction was not large, but a pressure difference between the inside and outside of the baffle was generated. The shape of the exhaust gas stream was investigated, and when water was not sprayed, the exhaust gas flowed constantly to the outlet along the guide vane, in contrast to when water was sprayed. It was confirmed that the shape of the flow was influenced by the guide vane, nozzle arrangement and water pressure. In the case of the swirl-type scrubber, impact on engine back-pressure was minimal, because differential pressure at the inlet and outlet was less than half of that with a conventional scrubber.

Detection of Thermal Ratcheting Deformation for Cylindrical Shells by Ultrasonic Guided Wave (유도초음파를 이용한 원통형 쉘의 열 라체팅 변형 탐지)

  • Joo, Young-Sang;Lee, Hyeong-Yeon;Kim, Jong-Bum;Park, Chang-Gyu;Lee, Jae-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.297-305
    • /
    • 2006
  • The thermal ratcheting deformation at the reactor baffle and upper internal structure of the liquid metal reactor (LMR) can occur due to movement of the hot sodium free surface. In in-service inspection of reactor internals of LMR, a new inspection technique should be developed for the detection of the thermal ratcheting damage. In this study, an inspection technique using ultrasonic guided wave is proposed for the detection of the thermal ratcheting damage of cylindrical vessels. A 316L stainless steel cylindrical shell specimen has been prepared. The thermal ratchet structural tests were cyclically performed by heat-up up to $550^{\circ}C$ with steep temperature gradients along the axial direction after cool-down by cooling water. Ultrasonic guided wave propagation has been characterized by analysis of dispersion curve of the stainless steel plate. The zero-order antisymmetric $A_0$ guided wave has been selected as the optimal mode for detection of the ratcheting deformation. It is confirmed that the thermal ratcheting deformation can be detected by the measurement of transit time difference of circumferentially propagated $A_0$ guided waves.

A Study of Sloshing Tank on Vessel Motions with Various Baffle Clearance (탱크 내 격벽에 의한 간극 변화가 선박 운동에 미치는 영향 연구)

  • Kim, Kyung Sung;Yu, Sunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.796-802
    • /
    • 2018
  • The effects of inner liquid sloshing on vessel motions are a well-known factor. It was investigated experimentally and numerically. In this regard, the study of many efforts to reduce natural phenomena of vessel motions by adopting special devices especially for roll motions. Among many devices, inserting baffles in the inner liquid tank is very common. In this study, one investigated the vessel motions with inner sloshing tanks with baffles inside. For the numerical simulation, one employed a dynamically coupled program between boundary-element-method-based vessel motion analysis program and a particle-based computational fluid dynamics program. Comparing corresponding experimental results validated the dynamically coupled program. The validated coupled program was used to simulate vessel motions, including sloshing effects with various lengths of inner baffles. The simulation results show that not only the filling ratio of inner liquid, but also the length of clearance due to baffles influenced the vessel motions. The significant point of this study was that the natural frequency of vessel motions can be maintained irrespective of the amount of filling ratio through adjustment of the clearance. In a future study, the effects of various numbers of baffles with various clearances would be conducted to percuss the possibility of vessel motion control with inner liquid sloshing effects.

Robust Design for Showerhead Thermal Deformation

  • Gong, Dae-Wi;Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.150.1-150.1
    • /
    • 2014
  • Showerhead is used as a main part in the semiconductor equipment. The face plate flatness should remain constant and the cleaning performance must be gained to keep the uniformity level of etching or deposition in chemical vapor deposition process. High operating temperature or long period of thermal loading could lead the showerhead to be deformed thermally. In some case, the thermal deformation appears very sensitive to showerhead performance. This paper describes the methods for robust design using computational fluid dynamics. To reveal the influence of the post distribution on flow pattern in the showerhead cavity, numerical simulation was performed for several post distributions. The flow structure appears similar to an impinging flow near a centered baffle in showerhead cavity. We took the structure as an index to estimate diffusion path. A robust design to reduce the thermal deformation of showerhead can be achieved using post number increase without ill effect on flow. To prevent the showerhead deformation by heat loading, its face plate thickness was determined additionally using numerical simulation. The face plate has thousands of impinging holes. The design key is to keep pressure drop distribution on the showerhead face plate with the holes. This study reads the methodology to apply to a showerhead hole design. A Hagen-Poiseuille equation gives the pressure drop in a fluid flowing through such hole. The assumptions of the equation are the fluid is viscous-incompressible and the flow is laminar fully developed in a through hole. An equation can be expressed with radius R and length L related to the volume flow rate Q from the Hagen-Poiseuille equation, $Q={\pi}R4{\Delta}p/8{\mu}L$, where ${\mu}$ is the viscosity and ${\Delta}p$ is the pressure drop. In present case, each hole has steps at both the inlet and the outlet, and the fluid appears compressible. So we simplify the equation as $Q=C(R,L){\Delta}p$. A series of performance curves for a through hole with geometric parameters were obtained using two-dimensional numerical simulation. We obtained a relation between the hole diameter and hole length from the test cases to determine hole diameter at fixed hole length. A numerical simulation has been performed as a tool for enhancing showerhead robust design from flow structure. Geometric parameters for the design were post distribution and face plate thickness. The reinforced showerhead has been installed and its effective deposition profile is being shown in factory.

  • PDF

Numerical Study for Flow Uniformity in Selective Catalytic Reduction(SCR) Process (SCR 공정에서 반응기 내부의 유동 균일화를 위한 수치적 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4666-4672
    • /
    • 2011
  • Performance of NOx removal in SCR(Selective Catalytic Reduction) process depends on such various factors as catalyst factors (catalyst composition, catalyst form, space velocity, etc.), temperature of exhaust gas, and velocity distribution of exhaust gas. Especially the flow uniformity of gas stream flowing into the catalyst layer is believed to be the most important factor to influence the performance. In this research, the flow characteristics of a SCR process at design stage was simulated, using 3-dimensional numerical analysis method, to confirm the uniformity of the gas stream. In addition, the effects of guide vanes, baffles, and perforated plates on the flow uniformity for the inside and catalyst layer of the reactor were studied in order to optimize the flow uniformity inside the SCR reactor. It was found that the installation of a guide vane at the inlet duct L-tube part and the installation of a baffle at the upper part is very effective in avoiding chaneling inside the reactor. It was also found that additional installation of a perforated plate at the lower part of the potential catalyst layer buffers once more the flow for very uniform distribution of the gas stream.

Development of a New Clay Roof Tiles for the Reduction of Weight in Korean-Style Roof (한옥지붕 경량화를 위한 신형 한식기와 개발)

  • Park, Jin Cheol;Chung, Chan Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.765-771
    • /
    • 2019
  • New Korean-style clay roof tiles have been developed with a focus on significantly reducing the roof's weight while maintaining the strength, absorption rate, and freeze durability. The backflow of rain water through the gaps between roof tiles is prevented by employing baffles and a groove to accelerate water flow. With the new roof tiles, dry construction of a roof is possible without requiring soil. By using the dry construction method with the new roof tiles, a reduction in roof weight of more than 80% is possible compared to the conventional wet construction method with soil. In the case of a traditional Korean-style house with a building area of 99 square meters, the roof weight can be reduced from 135 tons to 24 tons. The new tiles satisfy the KS requirements and are more than 30% lighter than traditional roof tiles. A roof constructed using the new tiles showed no water leaks when exposed to typhoon-class winds with speeds of 17 m/s and 200 mm/h of rainfall, which is 60% higher than the Korea rainfall record. The new roof tiles also have advantages of economic efficiency, workability, maintenance, and aseismicity compared to previous Korean-style roof tiles.

An Investigative Study on the Characterization of Cefaclor Decomposition in UV/H$_2$O$_2$ Process (UV/H$_2$O$_2$공정에 의한 Cefaclor 분해 특성에 관한 기초연구)

  • Cho, Chun-Ki;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1039-1046
    • /
    • 2008
  • The combining process of UV irradiation and H$_2$O$_2$ was used to investigate characteristics of cefaclor decomposition in the aquatic environment. The separate mixing tank was used to minimize the decreasing effective of contact area caused by sampling. Four baffles were installed inside the UV reactor for the complete mixing of the sample and outside of the reactor was wrapped with aluminum foil to protect the emission of photon energy. Production of OH radical was measured using pCBA(p-Chlorobenzoic acid) indirectly and rate constants were withdrawn pseudo-frist order reaction. Optimum condition for the maximum production of OH radical was found to be pH 3, hydrogen peroxide of 5 mmol/L and recirculation rate of 400 mL/min. Pseudo-frist order reaction rate constant was 0.1051 min$^{-1}$. In the optimum condition, cefaclor was completely decomposed within 40 min and rate constant was 0.093 min$^{-1}$. Decomposition by OH radical producted intermediate anions such as chloride, nitrate, sulfite and acetic acid and phenylglycine. After 6 hr most cefaclor was decomposed by UV/H$_2$O$_2$ process and converted to CO$_2$ and H$_2$O, resulting of operation in the decrease of TOC and acetic acid and the disappearance of phenylglycine.

DEVELOPMENT OF THE MECHANICAL STRUCTURE OF THE MIRIS SOC (MIRIS 우주관측카메라의 기계부 개발)

  • Moon, B.K.;Jeong, W.S.;Cha, S.M.;Ree, C.H.;Park, S.J.;Lee, D.H.;Yuk, I.S.;Park, Y.S.;Park, J.H.;Nam, U.W.;Matsumoto, Toshio;Yoshida, Seiji;Yang, S.C.;Lee, S.H.;Rhee, S.W.;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.53-64
    • /
    • 2009
  • MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}\times3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump (GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화)

  • Lee, Jin Woo;Shin, Kwang Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • In this paper, we performed the design optimization dual-shell and tube heat exchanger on exhaust waste heat recovery for gas heat pump using CFD and RSM. CFD analysis is useful to design the complex structure such as double shell and tube heat exchanger. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such dual-shell and tube heat exchanger for GHP, the computational time can become overwhelming. CFD is powerful but it takes a lot of time for complex structure. Therefore, the CFD analysis is minimized by the optimization using the RSM method. As a result, the number of baffle and tube are optimized by 6 baffles and 25 tubes for heat transfer and flow friction. And then pressure drop and heat transfer is improved about 12.2%. We confirm the design optimization using CFD and RSM is useful on complex structure of heat exchanger.

The effect of Thermal Distribution on $LaSc_3(BO_3)_4$ Crystal Growth by Cz Method ($LaSc_3(BO_3)_4$ 단결정 성장조건)

  • 장영남;배인국
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • The rare-earth orthoborate family, RM3(BO3)4 is known to be the most promising material for the microlaser host. To grow LaSc3(BO3)4 single crystal, the phase relation of the system LaBO3-ScBO3 was investigated by DTA method. LaSc(BO3)4 was the unique intermediate compound in the binary system the peritectic reaction point of which was 1495 ±2℃. Owing to the peritectic behavior of the compound, the crystal growth of the rare-earth Sc-borate was carried out by pulling from the melt-soultion of La1+xSc3-x(BO3)4. The optimal conditions for the growth of LaSc3(BO3)4 were determined by traditional CZ method : pulling speed 0.7mm/hr, rotation speed 7-10 rpm under reduction condition. Pt and Ir crucibles could be used for about 8-10 times of growth. The effect of thermal configurations on the temperature distribution was investigated. A special two-coordinate manipulator was made for the precise movement of thermocouples from the melt to the top of the furnace for several thermal configurations. The radial gradient on the melt surface depends strongly on the construction of the afterheater. On the other hand, the axial gradient was mainly propotional to both the opening degree of baffle plate and the mutual positions of crucible and heater.

  • PDF