• Title/Summary/Keyword: bacteriocin production

Search Result 128, Processing Time 0.031 seconds

Characterization of Bacteriocin Produced by Enterococcus faecium MJ-14 Isolated from Meju

  • Lim, Sung-Mee;Park, Mi-Yeon;Chang, Dong-Suck
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2005
  • Enterococcus faecium MJ-14, having strong antilisterial activity, was isolated from Korean fermented food, Meju. MJ-14 showed the same phenotypic characteristics, but different sugar utilization, as reference strain, E. faecium KCCM12118. It could utilize D-xylose, amygdaline, and gluconate, whereas E. faecium KCCM12118 could not. Optimal condition for bacteriocin production by E. faecium MJ-14 was at $37^{\circ}C$ and pH 7.0. Bacteriocin activity appeared in mid exponential phase and increased rapidly up to stationary phase. Activity was significantly promoted in MRS broth containing 3.0% glucose, 1.5% lactose, 2.0% peptone, or 1.5% tryptone. Bacteriocins effectively inhibited Enterococcus faecalis and Listeria spp. of Gram-positive bacteria, and Helicobacter pylori of Gram-negative bacteria, but did not inhibit yeasts and molds. They were stable against heat (for 30 min at $100^{\circ}C$), pH (3.0-9.0), long-term storage (for 60 days at 4 or $-20^{\circ}C$), and enzymatic digestion by catalase, proteinase K, papain, lysozyme, trypsin, chymotrypsin, and lipase, etc. Bacteriocin activity was completely inhibited by protease and pepsin, and 50% by ${\alpha}$-amylase. Studies on PCR detection of enterocin structural genes revealed bacteriocins are identical to enterocins A and B.

Characteristics of Bacteriocin Produced by a Lactobacillus plantarum Strain Isolated from Kimchi (김치에서 분리한 Lactobacillus plantarum 균주가 생산하는 박테리오신의 특성)

  • Chung, Jae Hyuk;Bae, Yun-Sook;Kim, Yeon-Joo;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.481-485
    • /
    • 2010
  • Lactobacillus plantarum strain KK3 with tannase activity was isolated from Gochunipkimchi (red pepper leaf kimchi) and showed a high antagonistic activity against five kinds of food pathogens. Strain KK3 secreted antibacterial compound into culture medium and 24-h culture in MRS broth at $30^{\circ}C$ was enough for the antibacterial compound production. The crude antibacterial compound prepared from culture supernatant inhibited the growth of some Gram-negative bacteria and Bacillus cereus but not Listeria monocytogenes. The antibacterial activity was sensitive to proteinase K treatment, confirming its proteinaceous nature (bacteriocin). The crude bacteriocin was active in the pH range 3.5-8.5 and extremely stable after 15 min of heat treatment at $121^{\circ}C$. The strain KK3 produced equally active bacteriocin in Chinese cabbage juice as it produced in MRS broth.

Isolation of Bacteriocin-producing Lactic Acid Bacteria from Human Intestines and the Characteristics of their Bacteriocins (Bacteriocin을 생산하는 장내 유산균의 분리 및 Bacteriocin 특성조사)

  • 김정환;맹길재;김정상;지근억
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1228-1236
    • /
    • 1997
  • Lactobacillus strains were isolated from volunteer's feces, including from newly-born infants and adults in their 20's, by using differential MRS-BPB plates. Total 56 presumptive Lactobacillus strains were isolated and the bacteriocin productions by the isolates were examined by agar diffusion method. Six bacteriocin-producing strains were confirmed. Among them, two isolates, HU-1 and H22-3, showed the most outstanding antimicrobial activities, which were not affected by pH adjustments or catalase treatments of culture. HU-1 was originated from a two-years old boy and H22-3 was originated from a newly-born infant. HU-1 and H22-3 had the same morphology(short rod) when examined by scanning electron microscope, and the same biochemical traits including growth temperature range, salt tolerance and sugar-fermenting abilities. But the growth-inhibition spectrum and plasmid profiles of HU-1 and H22-3 were different. Both strains inhibited the growth of various Gram (+) microorganisms including Listeria monocytogenes. Micrococcus luteus, and Staphylococcus aureus in addition to many species of lactic acid bacteria, indicating the production of broad-spectrum bacteriocins. Bacteriocins produced by HU-1 and H22-3 were stable up to 90℃, 15 min heat treatments. Their activities were not affected by pepsin or trypsin treatments but destroyed by proteinaseK or pronase treatments.

  • PDF

Enhanced Production, Purification, and Partial Characterization of Lacticin BH5, a Kimchi Bacteriocin Produced by Lactococcus lactis BH5

  • Paik, Hyun-Dong;Hyun, Hyung-Hwan;Pyun, Yu-Ryang;Ahn, Cheol;Hur, Ji-Woon;Kim, Tae-Seok;Yeo, Ick-Hyun
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.53-60
    • /
    • 2000
  • Strain BH5 was isolated from naturally fermented Kimchi and identified as a bacteriocin producer, which has bactericidal activity against Micrococcus flavus ATCC 10240. Strain BH5 was identified tentatively as Lactococcus lactis by the API test and some characteristics. Lactococcus lactis BH5 showed a broad spectrum of activity against most of the non-pathogenic and pathogenic microorganisms tested by the modified deferred method. The activity of lacticin BH5, named tentatively as the bacteriocin produced by Lactococcus lactis BH5, was detected at the mid-log growth phase, reached its maximum during the early stationary phase, and decreased after the late stationary phase. Lacticin BH5 also showed a relatively broad spectrum of activity against non-pathogenic and pathogenic microorganisms as tested by the spot-on-lawn method. Its antimicrobial activity on sensitive indicator cells was completely disappeared by protease XIV or ${\alpha}$-chymotrypsin. The inhibitory activities of lacticin BH5 were detected during treatments up to 100$^{\circ}C$ for 30 min. Lacticin BH5 was very stable over a pH range of 2.0 to 9.0 and was stable with all the organic solvents examined. The cell concentration and bacteriocin production in strain BH5 were maximum when grown at 30$^{\circ}C$ in a modified MRS medium supplemented with 0.5% tryptone, 1.0% yeast extract, and 0.5% beef extract as nitrogen sources. It demonstrated a typical bactericidal mode of inhibition against Micrococcus flavus ATCC 10240. Lacticin BH5 was purified through ammonium sulfate precipitation, ethanol precipitation, and CM-Sepharose column chromatography. The apparent molecular mass of lacticin BH5 was estimated to be in the region of 3.7 kDa, by the direct detection of bactericidal activity after SDS-PAGE. Mutant strain NO141 which was isolated by nitrosoguanidine mutagenesis produced about 4 fold more bacteriocin than the wild type.

  • PDF

Optimal conditions and effects of prebiotics for growth and antimicrobial substances production of Lactobacillus brevis BK11 (Lactobacillus brevis BK11의 증식과 항균물질 생산을 위한 최적 배양조건 및 prebiotics의 영향)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.288-299
    • /
    • 2015
  • Lactobacillus brevis BK11 obtained from Baikkimchi was selected to study the effects of culture medium, initial pH, atmosphere composition, incubation temperature and time, and prebiotics on growth and production of antimicrobial substances. Growth and antimicrobial substances production of L. brevis BK11 were significantly higher in MRS broth than in BHI or M17 broth. The production of cell mass, lactic acid, and bacteriocin by BK11 strain was at maximum in MRS broth adjusted to pH 6.0. Aerobic and microaerobic conditions were favored cell growth and antimicrobial substances production than anaerobic condition. Biomass and lactic acid production and antimicrobial substances activity of BK 11 were significantly better at 30 and $37^{\circ}C$ than at $25^{\circ}C$. Growth of the strain BK11 entered the stationary growth stage at 24 h after inoculation, and decreased after 36 h. Antimicrobial activities of cell-free culture supernatant and bacteriocin solution were highest when cultured in MRS broth with an initial pH 6.0 for 24-30 h at $37^{\circ}C$. In addition, the highest cell number and lactic acid and bacteriocin production were recorded in the presence of 1 and 2% (w/v) fructooligosaccharide (FOS), however, inulin and raffinose did not affect biological and physicochemical characteristics and antimicrobial activities of L. brevis BK11 cultures. According to these results, production of antimicrobial substances by L. brevis KB11 was closely associated with cell density. Under optimal conditions for antimicrobial substances production, L. brevis BK11 effectively inhibited the growth of Helicobacter pylori ATCC 43504.

Medium Optimization for Pediocin SA131 Production by Pediococcus pentosaceus SA131 against Bovine Mastitis Using Response Surface Methodology

  • Park, Yeo-Lang;Lee, Na-Kyoung;Park, Keun-Kyu;Park, Yong-Ho;Kim, Jong-Man;Nam, Hyang-Mi;Jung, Suk-Chan;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.66-72
    • /
    • 2010
  • Pediococcus pentosaceus SA131 was isolated from jeotgal, is the bacteriocin producer against bovine mastitis pathogens, Streptococcus uberis E290, Enterococcus gallinarum E362, and Staphylococcus epidermidis ATCC 12228. The medium composition for pediocin SA131 production by P. pentosaceus SA131 was optimized using response surface methodology. Component of medium was studied as carbon source (glucose, fructose, lactose, glycerol, sucrose, maltose, and mannitol), nitrogen source (beef extract, yeast extract, peptone, malt extract, and tryptone), mineral and surfactant ($MgSO_4$, $KH_2PO_4$, $(NH_4)_2SO_4$, $MnSO_4$, NaCl, sodium acetate, and Tween 80). Through one factor-at-a-time experiment, glucose, fructose, yeast extract, malt extract, NaCl, $MgSO_4$, and Tween 80 were determined as the good ingredient. The effects of major factors for pediocin SA131 production were investigated by two-level fractional factorial designs (FFD). By a $2^4$ FFD, fructose, yeast extract, and $MnSO_4$ were found to be the important factors for the bacteriocin production. Subsequently, a $2^3$ central composite design (CCD) was adopted to derive a statistical model for optimizing the composition of the fermentation medium. The estimated optimum composition for the production of pediocin SA131 by P. pentosaceus SA131 was as follows; 0.13% fructose, 1% glucose, 1.8% yeast extract, 2.58% $MnSO_4$, 0.2% NaCl, and 0.2% Tween 80. The pediocin production under optimized medium was increased to 1,000 AU/mL, compared to the 400 AU/mL in MRS medium.

Antibacterial Activity of Yeast Transformed with Leucocin A (Leucocin A로 형질전환된 효모의 항균 활성도)

  • 이성일;이동근;이진옥;심두희;주치언;김옥수;이상현;이재화
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.291-294
    • /
    • 2004
  • The aim of this study was to figure out the antibacterial pattern of leucocin A transformed yeast with culture. Dry cell weight, total secreted protein, and antibacterial activity were increased to 12 hour, after then they showed decrease while protease activity represented the opposite pattern. This implied the production of leucocin A was growth-related. Compared to the result of one hour culture broth, antibacterial activity was about 3.24 fold at 12 hour culture. Maximum growth inhibition rate was 70.57% compared to nontransformed yeast. As the increase of protease in the supernatant, the antibacterial activity was diminished. This study could permit the mass production of bacteriocin to use as antibiotics or food preservatives.

Production and Partial Characterization of Lacticin JW3, a Bacteriocin Produced by Lactococcus lactis JW3 Isolated from Commercial Swiss Cheese Products

  • Jeong, Min-Yong;Baek, Hyeon-Dong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.554-557
    • /
    • 2000
  • Strain JV3 was isolated from commercial Swiss cheese products and identified as a bacteriocin producer, which has bactericidal activity against Leuconostoc mesenteroides KCCM 11324. Strain JW3 was identified tentatively as Lactococcus lactis by the API test. The activity of lacticin JW3, named tentatively as the bacteriocin produced by Lactococcus lactis JW3, was detected during the mid-log growth phase, and reached a maximum during the early stationary phase, and decreased after the late stationary phase. Its antimicrobial activity on sensitive indicator cells was completely disappeared by protease IV. The inhibitory activities of lacticin JW3 were detected during treatments of up to $121\'^{circ}C$ for 15 min. Lacticin JW3 was very stable over a pH range of 2.0 to 9.0 The apparent molecular mass of lacticin JW3 was estimated to be in the region of 3-3.5kDa, which was determined by the direct detection of bactericidal activity after SDS-PAGE.

  • PDF