• Title/Summary/Keyword: bacterial-resistant

Search Result 733, Processing Time 0.029 seconds

Healthcare-Associated Pneumonia among Hospitalized Patients: Is It Different from Community Acquired Pneumonia?

  • Seong, Gil Myung;Kim, Miok;Lee, Jaechun;Lee, Jong Hoo;Jeong, Sun Young;Choi, Yunsuk;Kim, Woo Jeong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.2
    • /
    • pp.66-74
    • /
    • 2014
  • Background: The increasing number of outpatients with multidrug-resistant (MDR) pathogens has led to a new category of pneumonia, termed healthcare-associated pneumonia (HCAP). We determined the differences in etiology and outcomes between patients with HCAP and those with community-acquired pneumonia (CAP) to clarify the risk factors for HCAP mortality. Methods: A retrospective study comparing patients with HCAP and CAP at Jeju National University Hospital. The primary outcome was 30-day mortality. Results: A total of 483 patients (208 patients HCAP, 275 patients with CAP) were evaluated. Patients with HCAP were older than those with CAP (median, 74 years; interquartile range [IQR], 65-81 vs. median, 69 years; IQR, 52-78; p<0.0001). Streptococcus pneumoniae was the major pathogen in both groups, and MDR pathogens were isolated more frequently from patients with HCAP than with CAP (18.8% vs. 4.9%, p<0.0001). Initial pneumonia severity was greater in patients with HCAP than with CAP. The total 30-day mortality rate was 9.9% and was higher in patients with HCAP based on univariate analysis (16.3% vs. 5.1%; odds ratio (OR), 3.64; 95% confidence interval (CI), 1.90-6.99; p<0.0001). After adjusting for age, sex, comorbidities, and initial severity, the association between HCAP and 30-day mortality became non-significant (OR, 1.98; 95% CI, 0.94-4.18; p=0.167). Conclusion: HCAP was a common cause of hospital admissions and was associated with a high mortality rate. This increased mortality was related primarily to age and initial clinical vital signs, rather than combination antibiotic therapy or type of pneumonia.

ANTIBACTERIAL EFFECT OF POLYPHOSPHATE ON ENDODONTOPATHIC BACTERIA (근관감염균에 대한 polyphosphate의 항균효과)

  • Shin, Jeong-Hee;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.435-448
    • /
    • 2003
  • This study was performed to observe the antibacterial effect of polyphosphate (polyP) with various chain lengths (P3~P75) on virulent. invasive strains of P. gingivalis A7A1-28 and W50, and multidrug resistant E. faecalis ATCC29212. P. gingivalis strains were grown in brain-heart infusion broth (BHI) containing hemin and vitamin K with or without polyP. PolyP was added at the very beginning of the culture or during the exponential growth phase of the culture. Inhibition of the growth of P. gingivalis was determined by measuring the absorbancy at 540nm of the grown cells. Viable cell counts of the culture and release of intracellular nucleotide from P. gingivalis were measured. E. faecalis was grown in plain BHI with antibiotics alone or in combination with polyP(calgon: 0.1~1.0%) and the bacterial absorbancy was measured. The overall results suggest that polyP has a strong antibacterial effect on the growth of the virulent strains of P. gingivalis and the antibacterial activity of polyP seems largely bactericidal. accompanying bacteriolysis in which chelation phenomenon is not involved. Although polyP does not exert antibacterial activity against E. faecalis, it appears to increase antibacterial effect of erythromycin and tetracycline on the bacterium. Therefore, polyP alone or in combination with antibiotics may be developed as a candidate for the agent controlling oral infections including endodontic infection.

New trends of root canal disinfection and treatment strategies for infected root canal based upon evidence-based dentistry

  • Cho, Yong-Bum
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.608-608
    • /
    • 2003
  • The main objectives of root canal therapy are cleaning and shaping and then obturating the root canal system in 3 dimensions to prevent reinfection. Many instrumentation techniques and devices, supported by an irrigation system capable of removing pulp tissue remnants and dentin debris, have been proposed to shape root canals. But current regimens in chemomechanical debridement using instrumentation and irrigation with NaOCl are not predictably effective in root canal disinfection. These findings are not surprising because the root canal system is complex and contains numerous ramifications and anatomical irregularities. The microorganisms in root canals not only invade the anatomic irregularities of the root canal system but also are present in the dentinal tubules. Therefore further disinfection with an effective antimicrobial agent may be necessary and it well1mown that use of intracanal medication will lower bacterial count in infected root canals. Calcium hydroxide has a long history of use in endodontics, and more attention has been given to the use of calcium hydroxide as intracanal dressing for the treatment of infected pulp. However, when treatment is completed in one visit, no intracanal medications other than intracanal irrigants are used. Recently, a mixture of a tetracycline isomer, an acid, and a detergent(MTAD), has been introduced as a final rinse for disinfuction of the root canal system. It has been shown that MTAD is able to remove the smear layer with minimal erosive changes on the surface of dentin, and is effective against Enterococcus faecalis, a microorganism resistant to the action of other antimicrobial medications. In another study, the ability of MTAD was investigated to disinfect contaminated root canals with whole saliva and compared its efficacy to that of NaOCl Based on the results, it seems that MTAD is significantly more effective than 5.25% NaOCl in eradicating bacteria from infected root canals. In the cytotoxicity evaluation, MTAD is less cytotoxic than engenol, 3% $H20_2,\;Ca(OH)_2$ paste, 5.25% NaGCl, Peridex, and EDTA and more cytotoxic than 2.63%,1.31% and 0.66% NaOCl. Is it promising or transient?

  • PDF

Antibacterial Efficacies of Disinfectants against Salmonella typhimurium Depending on Pre-warming Conditions

  • Lee, Jin-Ju;Kim, Dong-Hyeok;Kim, Dae-Geun;Simborio, Hannah Leah;Min, Won-Gi;Lee, Hu-Jang;Chang, Dong-Il;Chang, Hong-Hee;Kim, Suk
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.65-72
    • /
    • 2012
  • Salmonellosis is a widespread bacterial zoonosis that commonly causes enterocolitis and foodborne poisoning leading to an extensive economic loss in domestic animal industry. Considerably, the emergence of multidrug resistant strains of Salmonella spp. induces further severe problems affecting public health. The present report was designated to investigate the antibacterial efficacies of three common disinfectants including an oxidizing compound disinfectant (OXC), a triple salt (TS) and a quaternary ammonium compound (QAC) against Salmonella typhimurium subjected to the preliminary changes of drug temperature. All solutions of three disinfectants were pre-incubated at different temperature (22, 37 and $63^{\circ}C$) for 1 h prior to exposure to bacteria. The disinfectants and bacteria were diluted with distilled water (DW), hard water (HW) or organic matter suspension (OMS) according to treatment condition. Under the DW condition, the disinfectant efficacy of the QAC at $63^{\circ}C$ was higher than that of $22^{\circ}C$. Furthermore, under HW diluent the disinfectant efficacy of the TS pre-warmed at both of 37 and $63^{\circ}C$ were increased compared to that of $22^{\circ}C$. Considerably, the efficacy of pre-warmed QAC at both of 37 and $63^{\circ}C$ under the OMS diluent were higher than that of $22^{\circ}C$. Conclusively, prewarming at higher temperatures have positive effects on the stability of the antibacterial efficacies of TS and QAC.

Draft Genome Analysis of Antimicrobial Streptomyces Isolated from Himalayan Lichen

  • Kim, Byeollee;Han, So-Ra;Lamichhane, Janardan;Park, Hyun;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1144-1154
    • /
    • 2019
  • There have been several studies regarding lichen-associated bacteria obtained from diverse environments. Our screening process identified 49 bacterial species in two lichens from the Himalayas: 17 species of Actinobacteria, 19 species of Firmicutes, and 13 species of Proteobacteria. We discovered five types of strong antimicrobial agent-producing bacteria. Although some strains exhibited weak antimicrobial activity, NP088, NP131, NP132, NP134, and NP160 exhibited strong antimicrobial activity against all multidrug-resistant strains. Polyketide synthase (PKS) fingerprinting revealed results for 69 of 148 strains; these had similar genes, such as fatty acid-related PKS, adenylation domain genes, PfaA, and PksD. Although the association between antimicrobial activity and the PKS fingerprinting results is poorly resolved, NP160 had six types of PKS fingerprinting genes, as well as strong antimicrobial activity. Therefore, we sequenced the draft genome of strain NP160, and predicted its secondary metabolism using antiSMASH version 4.2. NP160 had 46 clusters and was predicted to produce similar secondary metabolites with similarities of 5-100%. Although NP160 had 100% similarity with the alkylresorcinol biosynthetic gene cluster, our results showed low similarity with existing members of this biosynthetic gene cluster, and most have not yet been revealed. In conclusion, we expect that lichen-associated bacteria from the Himalayas can produce new secondary metabolites, and we found several secondary metabolite-related biosynthetic gene clusters to support this hypothesis.

Sealing capability and marginal fit of titanium versus zirconia abutments with different connection designs

  • Sen, Nazmiye;Sermet, Ibrahim Bulent;Gurler, Nezahat
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2019
  • PURPOSE. Limited data is available regarding the differences for possible microleakage problems and fitting accuracy of zirconia versus titanium abutments with various connection designs. The purpose of this in vitro study was to investigate the effect of connection design and abutment material on the sealing capability and fitting accuracy of abutments. MATERIALS AND METHODS. A total of 42 abutments with different connection designs [internal conical (IC), internal tri-channel (IT), and external hexagonal (EH)] and abutment materials [titanium (Ti) and zirconia (Zr)] were evaluated. The inner parts of implants were inoculated with $0.7{\mu}L$ of polymicrobial culture (P. gingivalis, T. forsythia, T. denticola and F. nucleatum) and connected with their respective abutments under sterile conditions. The penetration of bacteria into the surrounding media was assessed by the visual evaluation of turbidity at each time point and the number of colony forming units (CFUs) was counted. The marginal gap at the implant- abutment interface (IAI) was measured by scanning electron microscope. The data sets were statistically analyzed using Kruskal-Wallis followed by Mann-Whitney U tests with the Bonferroni-Holm correction (${\alpha}=.05$). RESULTS. Statistically significant difference was found among the groups based on the results of leaked colonies (P<.05). The EH-Ti group characterized by an external hexagonal connection were less resistant to bacterial leakage than the groups EH-Zr, IT-Zr, IT-Ti, IC-Zr, and IC-Ti (P<.05). The marginal misfit (in ${\mu}m$) of the groups were in the range of 2.7-4.0 (IC-Zr), 1.8-5.3 (IC-Ti), 6.5-17.1 (IT-Zr), 5.4-12.0 (IT-Ti), 16.8-22.7 (EH-Zr), and 10.3-15.4 (EH-Ti). CONCLUSION. The sealing capability and marginal fit of abutments were affected by the type of abutment material and connection design.

Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som

  • Tangwatcharin, Pussadee;Nithisantawakhup, Jiraroj;Sorapukdee, Supaluk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1580-1590
    • /
    • 2019
  • Objective: The aims of this study were to select one strain of Lactobacillus plantarum (L. plantarum) for a potential indigenous safe starter culture with low level antibiotic resistant and low biogenic amine production and evaluate its effect on biogenic amines reduction in Moo som. Methods: Three strains of indigenous L. plantarum starter culture (KL101, KL102, and KL103) were selected based on their safety including antibiotic resistance and decarboxylase activity, and fermentation property as compared with a commercial starter culture (L. plantarum TISIR543). Subsequently, the effect of the selected indigenous safe starter culture on biogenic amines formation during Moo som fermentation was studied. Results: KL102 and TISIR 543 were susceptible to penicillin G, tetracycline, chloramphenicol, erythromycin, gentamycin, streptomycin, vancomycin, ciprofloxacin and trimethoprim (MIC90 ranging from 0.25 to $4{\mu}g/mL$). All strains were negative amino acid-decarboxylase for lysis of biogenic amines in screening medium. For fermentation in Moo som broth, a relatively high maximum growth rate of KL102 and TISIR543 resulted in a generation time than in the other strains (p<0.05). These strain counts were constant during the end of fermentation. Similarly, KL102 or TISIR543 addition supported increases of lactic acid bacterial count and total acidity in Moo som fermentation. For biogenic amine reduction, tyramine, putrescine, histamine and spermine contents in Moo som decreased significantly by the addition KL102 during 1 d of fermentation (p<0.05). In final product, histamine, spermine and tryptamine contents in Moo som inoculated with KL102 were lower amount those with TISIR543 (p<0.05). Conclusion: KL102 was a suitable starter culture to reduce the biogenic amine formation in Moo som.

Antibiotic Sensitivity Patterns in Children with Urinary Tract Infection: Retrospective Study Over 8 Years in a Single Center

  • Woo, Byungwoo;Jung, Youngkwon;Kim, Hae Sook
    • Childhood Kidney Diseases
    • /
    • v.23 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • Purpose: We studied the pathogens and trends in antibiotic sensitivity pattern in children with urinary tract infection (UTI) over 8 years in order to evaluate adequate treatment. Methods: We performed a retrospective review of medical records of children with UTI from January 2009 to December 2016 in Daegu Fatima Hospital. Uropathogens and antibiotic sensitivity patterns were selected. Only 1 bacterial species with a colony count of ${\geq}105CFU/mL$ was considered a positive result. We compared 2 periods group (A: 2009~2012, B: 2013~2016) to investigate trends of antibiotic sensitivity pattern. Results: During the 8 year period, 589 cases are identified (E. coli was cultured in 509 cases, 86.4%). Among all patients, this study investigated the antibiotic sensitivity of E. coli. Antimicrobial susceptibility to ampicillin was steadily low for both periods (A: 32.6%, B: 40.1%, P=0.125), and to amikacin was consistently high for both periods (A: 99.4%, B: 99.3%, P=1.000). Antibiotic sensitivity to third-generation cephalosporin decreased from period A to B (A: 91.7%, B: 75.5%, P=0.000). Antibiotic sensitivity to quinolone significantly decreased from A to B (A: 88.4%, B: 78.2%, P=0.003). The prevalence of extended-spectrum ${\beta}$-lactamase-producing E. coli increased from period A to B (A: 6.1%, B: 17.1%, P=0.000). Conclusion: This study showed that conventional antibiotic therapy for the treatment of pediatric UTI needs to be reevaluated. A careful choice of antibiotic is required due to the change in antibiotic sensitivity and the emergence of antibiotic-resistant bacteria.

Heterologous Expression of a Thermostable α-Galactosidase from Parageobacillus thermoglucosidasius Isolated from the Lignocellulolytic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Cui, MingYu;Wang, Qiong;Guo, Peng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.749-760
    • /
    • 2022
  • α-Galactosidase is a debranching enzyme widely used in the food, feed, paper, and pharmaceuticals industries and plays an important role in hemicellulose degradation. Here, T26, an aerobic bacterial strain with thermostable α-galactosidase activity, was isolated from laboratory-preserved lignocellulolytic microbial consortium TMC7, and identified as Parageobacillus thermoglucosidasius. The α-galactosidase, called T26GAL and derived from the T26 culture supernatant, exhibited a maximum enzyme activity of 0.4976 IU/ml when cultured at 60℃ and 180 rpm for 2 days. Bioinformatics analysis revealed that the α-galactosidase T26GAL belongs to the GH36 family. Subsequently, the pET-26 vector was used for the heterologous expression of the T26 α-galactosidase gene in Escherichia coli BL21 (DE3). The optimum pH for α-galactosidase T26GAL was determined to be 8.0, while the optimum temperature was 60℃. In addition, T26GAL demonstrated a remarkable thermostability with more than 93% enzyme activity, even at a high temperature of 90℃. Furthermore, Ca2+ and Mg2+ promoted the activity of T26GAL while Zn2+ and Cu2+ inhibited it. The substrate specificity studies revealed that T26GAL efficiently degraded raffinose, stachyose, and guar gum, but not locust bean gum. This study thus facilitated the discovery of an effective heat-resistant α-galactosidase with potent industrial application. Meanwhile, as part of our research on lignocellulose degradation by a microbial consortium, the present work provides an important basis for encouraging further investigation into this enzyme complex.

Antibacterial Effect of Various Fermentation Products and Identification of Differentially Expressed Genes of E.coli (다양한 발효액의 항균효과와 대장균의 유전적 변화에 미치는 영향)

  • Heo, Jihye
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are typical opportunistic pathogens. Moreover, these bacteria are known to possess multidrug-resistant (MDR) properties. This study investigates the antimicrobial activity of six fermented products, which have varying efficacies against P. aeruginosa, E. coli, and S. aureus. To identify novel candidate genes, differential expression analysis was performed using an annealing control primer. In the disk diffusion method, Fig vinegar (FV) and Diospyros kaki Thunb vinegar (DTV) showed the greatest increase in inhibition compared to other fermented products, whereas fermented Korean traditional nature herb (FKTNH) had no antibacterial effect. This study identified down-regulation of Escherichia coli O157:H7 ompW gene for outer membrane protein W, whereas gene for synthetic construct Lao1 gene for L-amino acid oxidase were up-regulated in E. coli treated with 5% FV. Consuming fermented vinegar helps prevent bacterial infections. Especially, FV and DTV are potentially useful alternative natural products for multidrug resistance. Furthermore, both are expected to be used as effective natural antimicrobial agents, such as disinfectants.