• Title/Summary/Keyword: bacterial volatile

Search Result 193, Processing Time 0.024 seconds

Effect of Marination with Black Currant Juice on the Formation of Biogenic Amines in Pork Belly during Refrigerated Storage

  • Cho, Jinwoo;Kim, Hye-Jin;Kwon, Ji-Seon;Kim, Hee-Jin;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.763-778
    • /
    • 2021
  • The effect of marination with black currant juice (BCJ) was investigated for their effects on meat quality and content of biogenic amines (BAs) [putrescine (PUT), cadaverine (CAD), histamine (HIM), tyramine (TYM), and spermidine (SPD)] in pork belly during storage at 9℃. BCJ was shown to have antibacterial activities against Escherichia coli and Pseudomonas aeruginosa. Additionally, the pH of pork belly marinated with BCJ (PBB) was significantly lower than that of raw pork belly (RPB) during storage. No significant difference in microorganisms between RPB and PBB was observed at day 0 of storage. However, at days 5 and 10 of storage, volatile basic nitrogen (VBN) was significantly decreased in PBB compared to RPB, and PBB also demonstrated significantly lower numbers of bacteria associated with spoilage (Enterobacteriaceae and Pseudomonas spp.) at these time-points. PBB was also associated with significantly reduced formation of BAs (PUT, CAD, TYM, and total BAs) compared to RPB at days 5 and 10 of storage. These results indicated that BCJ can be regarded as a natural additive for improving meat quality by preventing increased pH, VBN, bacterial spoilage, and inhibiting BAs formation during refrigerated storage.

Effect of Phytogenic Feed Additives in Soybean Meal on In vitro Swine Fermentation for Odor Reduction and Bacterial Community Comparison

  • Alam, M.J.;Mamuad, L.L.;Kim, S.H.;Jeong, C.D.;Sung, H.G.;Cho, S.B.;Jeon, C.O.;Lee, K.;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.266-274
    • /
    • 2013
  • The effect of different phytogenic feed additives on reducing odorous compounds in swine was investigated using in vitro fermentation and analyzed their microbial communities. Soybean meal (1%) added with 0.1% different phytogenic feed additives (FA) were in vitro fermented using swine fecal slurries and anaerobically incubated for 12 and 24 h. The phytogenic FAs used were red ginseng barn powder (Panax ginseng C. A. Meyer, FA1), persimmon leaf powder (Diospyros virginiana L., FA2), ginkgo leaf powder (Ginkgo biloba L., FA3), and oregano lippia seed oil extract (Lippia graveolens Kunth, OL, FA4). Total gas production, pH, ammonianitrogen ($NH_3$-N), hydrogen sulfide ($H_2S$), nitrite-nitrogen ($NO_2{^-}$-N), nitrate-nitrogen ($NO_3{^-}$-N), sulfate (${SO_4}^{--}$), volatile fatty acids (VFA) and other metabolites concentration were determined. Microbial communities were also analyzed using 16S rRNA DGGE. Results showed that the pH values on all treatments increased as incubation time became longer except for FA4 where it decreased. Moreover, FA4 incubated for 12 and 24 h was not detected in $NH_3$-N and $H_2S$. Addition of FAs decreased (p<0.05) propionate production but increased (p<0.05) the total VFA production. Ten 16S rRNA DGGE bands were identified which ranged from 96 to 100% identity which were mostly isolated from the intestine. Similarity index showed three clearly different clusters: I (FA2 and FA3), II (Con and FA1), and III (FA4). Dominant bands which were identified closest to Eubacterium limosum (ATCC 8486T), Uncultured bacterium clone PF6641 and Streptococcus lutetiensis (CIP 106849T) were present only in the FA4 treatment group and were not found in other groups. FA4 had a different bacterial diversity compared to control and other treatments and thus explains having lowest odorous compounds. Addition of FA4 to an enriched protein feed source for growing swine may effectively reduce odorous compounds which are typically associated with swine production.

INFLUENCE OF DIETARY PROTEIN ON THE FRACTIONATION OF SELENIUM IN THE RUMEN OF SHEEP

  • Serra, A.B.;Serra, S.D.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.557-562
    • /
    • 1996
  • The effects of diets differing in protein content through soybean meal supplementation on ruminal fractionation of selenium (Se) were studied. A $3{\times}3$ Latin square design was used with three Japanese Corriedale wethers (45 kg average body weight), three periods, and three dietary treatment. The three dietary treatments were : Diet 1, without soybean meal supplementation (14% crude protein, CP); Diet 2, with 10% soybean meal supplementation (16.5% CP); and Diet 3, with 20% soybean meal supplementation (19% CP). All the diets had a Se supplementation in the form of sodium selenite at 0.2 mg Se/kg dietary DM. The Se supplement and the concentrate mixture were fed only in the morning before the hay was given. Daily feeding schedule for gay was set at 09:00 and 17:00 h. On the final day of collection period, ruminal fluid samples were obtained at 0.5, 2, 6, 12 and 24 h post-feeding starting at 09:00 h. Total ruminal fluid Se was markedly higher (p<0.05) in Diet 3 than those in Diets 1 and 2 at almost all sampling time except at 24 h. The proportion of Se in soluble protein to the total ruminal Se was higher (p< 0.05) in Diet 3 (40%) followed by Diet 2 (28%) and Diet 1 (21%). The proportion of free inorganic Se to the total ruminal Se was the reverse, especially after two hours where Diet 1 (p<0.05) was higher than the other diets. Bacterial Se was lower (p < 0.05) in Diet 1 than those in Diets 2 and 3 at any sampling time. The highest was observed at 2 h postprandially in all diets with a value of 421, 556, $655{\mu}g/kg$ bacterial DM for Diet 1, 2 and 3, respectively. No differences (p>0.05) were observed on ruminal pH, ammonia and total nolatile fatty acids although increasing protein supplementation tended to decline the ruminal pH and increase ruminal ammonia. This study concludes that increasing dietary protein content by soybean meal supplementation can affect the ruminal Se metabolism.

Changes in the Microflora of Marine Fishes during Storage by Partial Freezing (해산어(海産魚)의 부분동결(部分凍結)에 의한 Microflora의 변화(變化))

  • Park, Chan-Sung;Choi, Kyoung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.1
    • /
    • pp.56-62
    • /
    • 1986
  • Marine fishes, sardine(Sardinops melanosticta), scad kingfish(Caranx equula), horse mackerel(Trachurus japonicus) and file fish(Navodon modestus), were stored for fifty days with partial freezing at$-3.5^{\circ}C$. During the storage, the changes in microflora and volatile nitrogen content was investigated. The fishes exhibited $10^4\;to\;10^6$ of bacterial cells per square centimeter of their skin just before they were submitted to the storage. The bacterial cell number was increased as $10^6\;to\;10^8$ cells as the storage time passed over twenty-two days. Offensive odor which is typical in the spoilage of fishes became strong as increase the bacterial cell numbe. The major isolates among the three hundred strains of bacteria isolated from the fish skins were identified as Pseudomonas I/II, III/IV-H, Vibrio and Moraxella. The same was found in the spoiled fishes, however, Pseudomonas I/II, was predominant on contrast to that of fresh fishes. Pseudomonas III/IV-NH, Flavobacterium, Cytophaga and Micrococcus were also found in early period of storage, but they disappeared as the progress of storage. Nine per cent of isolates were unidentified.

  • PDF

Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau

  • Fan, Qingshan;Wanapat, Metha;Hou, Fujiang
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1466-1478
    • /
    • 2021
  • Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.

Nitrogen Utilization of Cell Mass from Lysine Production in Goats

  • Seo, S.;Kim, H.J.;Lee, S.Y.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.561-566
    • /
    • 2008
  • Two experiments were conducted to evaluate nutritive value of cell mass from lysine production (CMLP) as a protein supplement for ruminants. In each experiment, animals were fed a diet containing 40% of forages and 60% of concentrates, mainly composed of rice straw and ground corn, respectively, to meet the maintenance requirements, and the diets were formulated to supply equal amounts of energy and nitrogen among treatments. In order to investigate the effect of CMLP on ruminal fermentation (Experiment 1), three Korean native goats weighing $26.1{\pm}1.4kg$ were allotted into individual cages with a $3{\times}3$ Latin square design. Each animal was fed one of three protein sources (CMLP, soybean meal (SBM), and urea). Rumen pH, bacterial and fungal counts, volatile fatty acid concentrations and acetate to propionate ratio were not significantly different among treatments. Concentration of propionate, however, was higher in SBM treatment (14.1 mM) than in CMLP (8.7 mM) or urea (9.3 mM) treatments. There was significantly more branch-chain volatile fatty acid production in CMLP (1.9 mM) and SBM (1.8 mM) treatments than in urea (1.3 mM) treatment. The number of protozoa was the highest in urea treatment, followed by CMLP and SBM treatment with significant differences. A metabolic trial (Experiment 2) was conducted to measure in vivo nutrient digestibility and nitrogen retention in Korean native goats fed CMLP and SBM. Two heavy ($35.0{\pm}1.2kg$) and two light ($25.0{\pm}0.9kg$) Korean native goats, caged individually, were used in this experiment. A heavy and a light animal were paired and supplemented with either CMLP or SBM. The animals fed CMLP showed a trend of lower total tract digestibility in all the nutrients measured; however, there was no statistical significance except for digestibility of ether extract. Nitrogen digestibility of CMLP was estimated to be about 7% units lower than that of SBM. There was a tendency for lower nitrogen retention in CMLP treatment (35.9%) compared to SBM treatment (42.3%). In summary, CMLP can be a good protein source for ruminant animals from nutritional and economic perspectives and may replace some, if not all, of SBM in a diet without losing nitrogen utilization efficiency. Further research is warranted for investigating the effect of CMLP fed with easily fermentable forage and the effective level of CMLP for replacing SBM.

Quality Characteristics of Kimchi Added with Green Tea Powder (분말녹차 첨가 김치의 품질 특성)

  • Ko, Young-Tae;Lee, Su-Hyun
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • The effects of green tea powder (GTP) on kimchi quality were evaluated by investigating acid production, growth of lactic acid bacteria, sensory properties, and several volatile odor components of GTP-added kimchi. The concentrations of GTE added to kimchi were 0.2, 0.4, 0.6 and 1.2% (w/w) of salted Chinese cabbage. The pH of kimchi with higher amounts of added GTP increased with ripening. The acidity of unripened kimchi or kimchi ripened for one day generally increased with the addition of GTP, while that of kimchi ripened for two or three days generally decreased with the addition of GTP. Addition of GTP had no significant effect on the lactic acid bacterial count of kimchi. Scores of overall acceptability, taste and odor of 0.2 or 0.4% GTP-added kimchi were higher than those of other samples, whereas scores of color decreased with increasing amount of GTP added to kimchi. Texture of kimchi added with higher amounts of GTP and ripened for two or three days resulted in lower score than the reference sample. Diallyl sulfide and methyl trisulfide were newly produced with the ripening of kimchi, and the amounts of some volatile odor components in kimchi were changed during ripening.

Effect of Dietary Supplementation of Sodium Salt of Isobutyric Acid on Ruminal Fermentation and Nutrient Utilization in a Wheat Straw Based Low Protein Diet Fed to Crossbred Cattle

  • Misra, A.K.;Thakur, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.479-484
    • /
    • 2001
  • The effect of dietary supplementation of sodium salt of isobutyric acid in low protein (10% CP) wheat straw based diet on nutrient utilization and rumen fermentation was studied in ruminally fistulated male crossbred cattle. The study included a 7 day metabolism and a 3 day rumen fermentation trials. The cattle were distributed into two equal groups of 4 each. The animals of control group were fed a basal diet consisting of wheat straw, concentrate mixture and green maize fodder in 40:40:20 proportion whereas branched chain volatile fatty acid (BCFA) supplemented group received a basal diet + isobutyric acid at 0.75 percent of basal diet. The duration of study was 36 days. The feed intake between experimental groups did not differ significantly and the average total DMI (% BW) was 2.01 and $2.28kg\;day^{-1}$ in control and BCFA supplemented diets. The dietary supplementation of BCFA improved (p<0.05) the DM, OM, NDF and cellulose digestibility by 4.46, 6.63, 10.57 and 11.31 per cent over those fed control diet. The total N retention on BCFA supplementation was improved (p<0.01) due to decreased (p<0.05) urinary N excretion. The concentrations of ruminal total N was 37.07 and $34.77mg\;100ml^{-1}$ in control and BCFA fed groups, respectively. Dietary supplementation BCFA significantly (p<0.01) reduced the ruminal ammonia N concentration as compared to control and the mean values ($mg\;100ml^{-1}$) were 13.18 and 9.42 in control and BCFA fed groups. The total VFA concentration was higher (p<0.01) in BCFA supplemented group (101.14 mM) than the control (93.05 mM). Among the VFAs, the molar proportion of acetate was higher (p<0.01) in BCFA supplemented group (71.07 mM) as compared to control (64.98 mM). However, the concentration of propionate and butyrate remained unchanged. Amino acids composition of bacterial hydrolysates was similar in both the groups. Ruminal outflow rate of liquid digesta was higher (p<0.01) in BCFA fed group ($67.56l\;day^{-1}$) than control ($52.73l\;day^{-1}$). It is concluded that the dietary supplementation of Na-salt of isobutyric acid in low protein diet improved the nutrient utilization and ruminal fermentation characteristics.

Rapid Processing of the Fish Sauce and Its Quality Evaluation (속성어간장 제조 및 품질 평가)

  • Shin, Suk-U;Kwon, Mi-Ae;Jang, Mi-Sun;Kang, Tae-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.666-672
    • /
    • 2002
  • Changes in chemical characteristic, microflora, and sensory evaluation of fish sauce extracted at an interval of one week from fermented solution were investigated. pH was reduced from 6.0 to 4.5, and trimethylamine oxide from 132.5 to 87.2 mg/100g during fermenting periods. Trimethylamine increased from 5.6 to 50.2 mg/100g, and volatile basic nitrogen from 48.3 to 232.5 mg/100g. Bacterial flora isolated from the fish sauce were 70% Lactobacillus sp. and 13% Bacillus sp. Among the free amino acids, alanine, glutamic acid, valine, and methionine contents constitute 40% of the total free amino acids. Major non-volatile organic acid of the fish sauce was lactic acid (76%). Sensory evaluation results of the fish sauce were higher than the traditional soybean sauce after 28 days of fermentation.

Quality Characteristics of Kimchis with different Ingredients (재료를 달리한 김치의 품질)

  • Kim, Myung-Hee;Shin, Mal-Sik;Jhon, Deok-Young;Hong, Yoon-Ho;Lim, Hyun-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.4
    • /
    • pp.268-277
    • /
    • 1987
  • The changes of the aerobic viable bacterial counts, the content of chemical components and the sensory evaluation in Kimchis which were prepared with Various ingredients (red pepper, green onion, garlic and ginger) and fermentation at $20^{\circ}C$ were investigated. Aerobic viable bacterial counts were suddenly decreased with fermentation, but it was decreased slowly from the second day. Salinity of Kimchis was $1.8%{\sim}2.0%$ and titratable acidify were lower in sample 2 (deleted red pepper) and 3 (deleted green onion) on the first day but sample 4 (deleted garlic) after the fifth day. Total sugar content was decreased from $1.8{\sim}2.7g/100g$ to $0.8{\sim}1.1g/100g$ during fermentation periods. Carbon dioxide content maintained relatively higher in sample 2 and 5 (deleted ginger) with fermentation. Volatile organic acid content showed no difference in all Kimchis with fermentation. During the whole fermentation period, appearance was the worst in sample 2. Texture, off-flavor and overall-eating quality were the worst in sample 4. Carbonated flavor and overall eating quality were the best in sample 5.

  • PDF