• Title/Summary/Keyword: bacterial enzymes

Search Result 301, Processing Time 0.022 seconds

Production and Properties of Hemicellulases by a Cellulosimicrobium sp. Isolate (Cellulosimicrobium sp. 분리균의 Hemicellulases 생산성과 효소특성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.252-258
    • /
    • 2011
  • A bacterial strain capable of hydrolyzing xylan and locust bean gum (LBG) was isolated from farm soil by enrichment culture using mixture of palm kernel meal (PKM) and wheat bran as carbon source. Nucleotide sequence of 16S rDNA amplified from the isolate YB-1107 showed high similarity with those of genus Cellulosimicrobium strains. Xylanase productivity was increased when the Cellulosimicrobium sp. YB-1107 was grown in the presence of wheat bran or oat spelt xylan, while mannanase productivity was increased drastically when grown in the presence of PKM or LBG. Particularly, maximum mannanase and xylanase activities were obtained in the culture filtrate of media containing 0.7% PKM or 1% wheat bran, respectively. Both enzyme activities were produced at stationary growth phase. Mannanase from the culture filtrate showed the highest activity at $55^{\circ}C$ and pH 6.5. Xylanase activity was optimal at $65^{\circ}C$ and pH 5.5. The predominant products resulting from the mannanase or xylanase hydrolysis were oligosaccharides for LBG or xylan, respectively. In addition, the enzymes could hydrolyze wheat bran and rice bran into oligosaccharides.

Development of Fecal Microbial Enzyme Mix for Mutagenicity Assay of Natural Products

  • Yeo, Hee-Kyung;Hyun, Yang-Jin;Jang, Se-Eun;Han, Myung-Joo;Lee, Yong-Sup;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.838-848
    • /
    • 2012
  • Orally administered herbal glycosides are metabolized to their hydrophobic compounds by intestinal microflora in the intestine of animals and human, not liver enzymes, and absorbed from the intestine to the blood. Of these metabolites, some, such as quercetin and kaempherol, are mutagenic. The fecal bacterial enzyme fraction (fecalase) of human or animals has been used for measuring the mutagenicity of dietary glycosides. However, the fecalase activity between individuals is significantly different and its preparation is laborious and odious. Therefore, we developed a fecal microbial enzyme mix (FM) usable in the Ames test to remediate the fluctuated reaction system activating natural glycosides to mutagens. We selected, cultured, and mixed 4 bacteria highly producing glycosidase activities based on a cell-free extract of feces (fecalase) from 100 healthy Korean volunteers. When the mutagenicities of rutin and methanol extract of the flos of Sophora japonica L. (SFME), of which the major constituent is rutin, towards Salmonella typhimurium strains TA 98, 100, 102, 1,535, and 1,537 were tested using FM and/or S9 mix, these agents were potently mutagenic. These mutagenicities using FM were not significantly different compared with those using Korean fecalase. SFME and rutin were potently mutagenic in the test when these were treated with fecalase or FM in the presence of S9 mix, followed by those treated with S9 mix alone and those with fecalase or FM. Freeze-dried FM was more stable in storage than fecalase. Based on these findings, FM could be usable instead of human fecalase in the Ames test.

Genetic and Phenotypic Diversity of Plant Growth Promoting Rhizobacteria Isolated from Sugarcane Plants Growing in Pakistan

  • Mehnaz, Samina;Baig, Deeba N.;Lazarovits, George
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1614-1623
    • /
    • 2010
  • Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to $41^{\circ}C$ and at pH 11.

Isolation and Characterization of a Bacterium from Korean Soy Paste Doenjang Producing Inhibition of Angiotensin Converting Enzyme (된장으로부터 Angiotensin 전환효소 저해제 생산 세균의 분리 및 특성)

  • Kim, Yong-Seok;Rhee, Chang-Ho;Park, Heui-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.84-88
    • /
    • 2001
  • About 100 bacterial strains producing proteolytic enzymes were isolated from Korean traditional soy paste Doenjang. Among them, strain SYG3 producing the highest level of angiotensin converting enzyme (ACE) inhibitor into the culture medium was selected and identified as Bacillus pumilus according to the Bergey's mannual of systematic bacteriology. Soybean powder as a nitrogen source and glucose as a carbon source supported high level of ACE inhibitor production. The presence of 3% NaCl also enhanced the production of ACE inhibitor in the medium. The optimum initial pH of the medium and culture temperature for the production of ACE inhibitor were 7.0 and $32^{\circ}C$, respectively. The maximal level of ACE inhibitory effect was obtained after 36 hours of cultivation under the optimized conditions, which was about 98% of inhibition ratio.

  • PDF

Properties of ${\beta}$-Galactosidase from Bacillus licheniformis Isolated from Cheongkookjang (청국장 유래 Bacillus licheniformis의 ${\beta}$-Galactosidase 특성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • A bacterial strain was isolated from homemade Cheongkookjang as a producer of the ${\beta}$-galactosidase, capable of hydrolyzing lactose to liberate galactose and glucose residues. The isolate YB-1105 has been identified as Bacillus licheniformis on the basis of its 16S rDNA sequence, morphology and biochemical properties. ${\beta}$-Galactosidase activity was detected in both the culture supernatant and the cell extract of B. licheniformis YB-1105. The enzymes of both fractions demonstrated maximum activity for hydrolysis of para-nitrophenyl-${\beta}$-D-galactopyranoside (pNP-${\beta}Gal$) under identical reaction conditions of pH 6.5 and $50^{\circ}C$. However, ${\beta}$-galactosidase activity from the culture filtrate was affected more than that from the cell free extract at acidic pHs and high temperatures. The hydrolyzing activity of both ${\beta}$-galactosidases for pNP-${\beta}Gal$ was dramatically decreased by the addition of low concentrations of galactose, but was only marginally decreased by high concentrations of glucose or mannose.

Cultivable Microbial Diversity in Domestic Bentonites and Their Hydrolytic Enzyme Production

  • Seo, Dong-Ho;Cho, Eui-Sang;Hwang, Chi Young;Yoon, Deok Jun;Chun, Jeonghye;Jang, Yujin;Nam, Young-Do;Park, So-Lim;Lim, Seong-Il;Kim, Jae-Hwan;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • We have isolated and identified 72 bacterial strains from four bentonite samples collected at the mining areas located in Gyeongsangbuk-do, Republic of Korea, and measured their hydrolytic enzyme (${\alpha}$-amylase, protease, and cellulase) activities to identify the isolates with industrial-use potential. Most of the isolates belonged to the Bacillaceae, with minor portions being from the Paenibacillaceae, Micrococcaceae, and Bacillales Family XII at the family level. Of the strains isolated, 33 had extracellular ${\alpha}$-amylase activity, 30 strains produced cellulase, and 35 strains produced protease. Strain MBLB1268, having the highest ${\alpha}$-amylase activity, was identified as Bacillus siamensis ($0.38{\pm}0.06U/ml$). Bacillus tequilensis MBLB1223, isolated from Byi33-b, showed the highest cellulase activity ($0.26{\pm} 0.04U/ml$), whereas Bacillus wiedmannii MBLB1197, isolated from Zdb130-b, exhibited the highest protease activity ($54.99{\pm}0.78U/ml$). These findings show that diverse bacteria of the Bacillaceae family adhere to and exist in bentonite and are potential sources of industrially useful hydrolytic enzymes.

Anticaries Effect of Ethanol Extract of Terminalia chebula

  • Lee, Moonkyung;Hwang, Young Sun
    • Journal of dental hygiene science
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2021
  • Background: Dental caries is mainly composed of various cellular components and is deposited around the tooth surface and gums, causing a number of periodontal diseases. Streptococcus mutans is commonly found in the human oral cavity and is a significant contributor to tooth decay. The use of antibacterial ingredients in oral hygiene products has demonstrated usefulness in the management of dental caries. This study investigated the anticaries effect of the ethanol extract of Terminalia chebula (EETC) against S. mutans and their cytotoxicity to gingival epithelial cells. Methods: The EETC was prepared from T. chebula fruit using ethanol extraction. Disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and colony forming unit (CFU) were analyzed to investigate the antimicrobial activity of the EETC. Glucan formation was measured using the filtrate of the bacterial culture medium and sucrose. Gene expression was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Cytotoxicity was analyzed via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: The antibacterial activity of the EETC was explored using disc diffusion and CFU measurements. The MIC and MBC of the EETC were 10 and 20 ㎍/ml, respectively. EETC treatment decreased insoluble glucan formation by S. mutans enzymes and also resulted in reduced glycosyltransferase B (gtf B), gtf C, gtf D, and fructosyltransferase (ftf), expressions on RT-PCR. In addition, at effective antibacterial concentrations, EETC treatment was not cytotoxic to gingival epithelial cells. Conclusion: These results demonstrate that the EETC is an effective anticaries ingredient with low cytotoxicity to gingival epithelial cells. The EETC may be useful in antibacterial oral hygiene products for the management of dental caries.

The Metabolic Functional Feature of Gut Microbiota in Mongolian Patients with Type 2 Diabetes

  • Yanchao Liu;Hui Pang;Na Li;Yang Jiao;Zexu Zhang;Qin Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1214-1221
    • /
    • 2024
  • The accumulating evidence substantiates the indispensable role of gut microbiota in modulating the pathogenesis of type 2 diabetes. Uncovering the intricacies of the mechanism is imperative in aiding disease control efforts. Revealing key bacterial species, their metabolites and/or metabolic pathways from the vast array of gut microorganisms can significantly contribute to precise treatment of the disease. With a high prevalence of type 2 diabetes in Inner Mongolia, China, we recruited volunteers from among the Mongolian population to investigate the relationship between gut microbiota and the disease. Fecal samples were collected from the Volunteers of Mongolia with Type 2 Diabetes group and a Control group, and detected by metagenomic analysis and untargeted metabolomics analysis. The findings suggest that Firmicutes and Bacteroidetes phyla are the predominant gut microorganisms that exert significant influence on the pathogenesis of type 2 diabetes in the Mongolian population. In the disease group, despite an increase in the quantity of most gut microbial metabolic enzymes, there was a concomitant weakening of gut metabolic function, suggesting that the gut microbiota may be in a compensatory state during the disease stage. β-Tocotrienol may serve as a pivotal gut metabolite produced by gut microorganisms and a potential biomarker for type 2 diabetes. The metabolic biosynthesis pathways of ubiquinone and other terpenoid quinones could be the crucial mechanism through which the gut microbiota regulates type 2 diabetes. Additionally, certain Clostridium gut species may play a pivotal role in the progression of the disease.

A Study Bioremediation of Tidal Flat by Microorganism in Pilot Scale Test (환경정화 미생물에 의한 갯벌의 생물학적 정화에 대한 파일럿 규모의 연구)

  • Choi, Hye Jin;Han, Young Sun;Park, Doo Hyun;Oh, Bo Young;Hur, Myung Je;Jo, Nam-Gyu;Kim, Young Hee;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1110-1117
    • /
    • 2014
  • Tidal flats are continuously contaminated by human activities. This study assessed the bioremediation efficiency of tidal flat soil using microcosm reactors and microorganisms originating from the tidal area. We screened 135 bacterial strains that produce extracellular enzymes from the tidal area located in the North port of Incheon bay. Two bacterial strains (Pseudoalteromonas sp. and IC35 Halothiobacillus neapolitanus IC_S22) were selected and used in the microcosm reactors, which were specially designed to functionally mimic the ecological conditions of the tidal flats. Pseudoalteromonas sp. IC35 was selected based on its relatively high activity of the enzymes amylase, cellulose, lipase, and protease. Halothiobacillus neapolitanus IC_S22 was selected for oxidation of sulfur. The M1 and M2 microcosm reactors were operated by continuous feeding of seawater under the same conditions, but M2 was first inoculated with Pseudoalteromonas sp. IC35 before the seawater feeding. The initial COD in both the M1 and M2 microcosm reactors was 320 mg/l. The final COD was 21 mg/l (M1) and 7 mg/l (M2). The M3 and M4 microcosm reactors were operated by continuous feeding of seawater under the same conditions, but M4 was first inoculated with H. neapolitanus IC_S22. The initial sulfate concentration in both the M3 and M4 microcosm reactors was 660 mg/l, and the maximum sulfate concentration was 1,360 mg/l (M3) and 1,600 mg/l (M4).

Safety of Nano-sized Bee Pollen in both In-vitro and In-vivo Models (생체 외 및 생체 내 실험조건에서 나노화 벌 화분의 안전성 규명)

  • Pyeon, Hae-In;So, Soojeong;Bak, Jia;Lee, Seunghyun;Lee, Seungmin;Suh, Hwa-Jin;Lim, Je-Oh;Kim, Jung-Woo;Kim, Sun Youn;Lee, Se Ra;Lee, Yong Hyun;Chung, Il Kyung;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.605-614
    • /
    • 2018
  • Bee pollen has an outer wall which is resistant to both acidic and basic solutions and even the digestive enzymes in the gastrointestinal tract. Therefore, the oral bioavailability of bee pollen is only 10-15%. A previous study reported on wet-grinding technology which increased the extraction of active ingredients from bee pollen by 11 times. This study was designed to investigate the safety of wet-ground bee pollen. First, a single dose of wet-ground bee pollen was tested in both rats and beagle dogs at dosages of 5, 10, and 20 g/kg and 1.5, 3, and 6 g/kg, respectively. In rats, compound-colored stools were found in those administered 10 g/kg or more of wet-ground bee pollen. In beagle dogs, 6 g/kg of wet-ground bee pollen induced diarrhea in one male for four hours. However, no obvious clinical signs were found through the end of the experiment in rats and beagle dogs. In addition, no histological abnormality was found in all animals. The data indicates that a single dose of up to 20 g/kg of wet-ground bee pollen is safe. Next, the genetic toxicity of nano-sized bee pollen was tested. This study employed a bacterial reverse mutation test, a micronucleus assay, and a chromosomal aberration assay. In the micronucleus assay, there was no genetic toxicity up to the dosage of 2 g/kg. There was also no genetic toxicity in the bacterial reverse mutation test and chromosomal aberration assay. This data provides important information in developing nano-sized bee pollen into more advanced functional foods and herbal medicines.