Browse > Article

Production and Properties of Hemicellulases by a Cellulosimicrobium sp. Isolate  

Yoon, Ki-Hong (Department of Food Science & Biotechnology, Woosong University)
Publication Information
Microbiology and Biotechnology Letters / v.39, no.3, 2011 , pp. 252-258 More about this Journal
Abstract
A bacterial strain capable of hydrolyzing xylan and locust bean gum (LBG) was isolated from farm soil by enrichment culture using mixture of palm kernel meal (PKM) and wheat bran as carbon source. Nucleotide sequence of 16S rDNA amplified from the isolate YB-1107 showed high similarity with those of genus Cellulosimicrobium strains. Xylanase productivity was increased when the Cellulosimicrobium sp. YB-1107 was grown in the presence of wheat bran or oat spelt xylan, while mannanase productivity was increased drastically when grown in the presence of PKM or LBG. Particularly, maximum mannanase and xylanase activities were obtained in the culture filtrate of media containing 0.7% PKM or 1% wheat bran, respectively. Both enzyme activities were produced at stationary growth phase. Mannanase from the culture filtrate showed the highest activity at $55^{\circ}C$ and pH 6.5. Xylanase activity was optimal at $65^{\circ}C$ and pH 5.5. The predominant products resulting from the mannanase or xylanase hydrolysis were oligosaccharides for LBG or xylan, respectively. In addition, the enzymes could hydrolyze wheat bran and rice bran into oligosaccharides.
Keywords
Cellulosimicrobium sp.; mannanase; xylanase; productivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Bakalidou, A., P. kampfer, M. Berchtold, T. Kuhnigk, M. Wenzel, and H. Konig. 2002. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int. J. Syst. Evol. Microbiol. 52: 1185-1192.   DOI   ScienceOn
2 Huitron, C., R. Perez, A. E. Sanchez, P. Lappe, and L. Rocha Zavaleta. 2008. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes. J. Environ. Biol. 29: 37-41.
3 Shibasaki, S., J. Okada, Y. Nakayama, T. Yoshida, and M. Ueda. 2008. Isolation of bacteria which produce yeast cell wall-lytic enzymes and their characterization. Biocontrol Sci. 13: 91-96.   DOI   ScienceOn
4 Song, J. -M. and D. -Z. Wei. 2010. Production and characterization of cellulases and xylanases of Cellulosimicrobium cellulans grown in pretreated and extracted bagasse and minimal nutrient medium M9. Biomass Bioenergy. 34: 1930- 1934.   DOI   ScienceOn
5 Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64.   DOI   ScienceOn
6 Yoon, K. -H., S. Chung, and B. -L. Lim. 2008. Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46: 344-349.   DOI   ScienceOn
7 Nagar, S., V. K. Gupta, D. Kumar, L. Kumar, and R. C. Kuhad. 2010. Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J. Ind. Microbiol. 37: 71-83.   DOI   ScienceOn
8 Zangiabadi, H. and M. Torki. 2010. The effect of a betamannanase- based enzyme on growth performance and humoral immune response of broiler chickens fed diets containing graded levels of whole dates. Trop. Anim. Health Prod. 42: 1209-1217.   DOI   ScienceOn
9 Liu, C. H., J. Y. Wu, and J. S. Chang. 2008. Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. Bioresour. Technol. 99: 1904-1910.   DOI   ScienceOn
10 Miller, M. L., R. Blum, W. E. Glennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2: 127-132.
11 Jorgensen, H. A. R. Sanadi, C. Felby, N. E. Lange, M. Fischer, and S. Ernst. 2010. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake. Appl. Biochem. Biotechnol. 161: 318-332.   DOI
12 Oh, H. -W., S. Y. Heo, D. Y. Kim, D. -S. Park, K. S. Bae, and H. -Y. Park. 2008. Biochemical characterization and sequence analysis of a xylanase produced by an exosymbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie van Leeuwenhoek. 93: 437- 442.   DOI   ScienceOn
13 Oh, Y. P., J. -M. Lee, K. H. Cho, and K. -H. Yoon. 2002. Isolation and enzyme production of a mannanase-producing strain, Bacillus sp. WL-3. Kor. J. Microbiol. Biotechnol. 30: 247-252.
14 Schumann, P., N. Weiss, and E. Stackebrandt. 2001. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51: 1007-1010.   DOI   ScienceOn
15 Kansoh, A. L. and Z. A. Nagieb. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek. 85: 103-114.
16 Kim, D. Y., M. K. Han, D. -S. Park, J. S. Lee, H. -W. Oh, D. -H. Shin, T. S. Jeong, S. U. Kim, K. S. Bae, K. -H. Son, and H. -Y. Park. 2009. Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl. Environ. Microbiol. 75: 7275-7279.   DOI   ScienceOn
17 Kim, D. Y., S. -J. Ham, H. J. Lee, Y. -J. Kim, D. -H. Shin, Y. H. Rhee, K. -H. Son, and H. -Y. Park. 2011. A highly active endo-$\beta$-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Micrb. Technol. 48: 365-370.   DOI   ScienceOn
18 Kim, D. Y., M. K. Han, J. S. Lee, H. -W. Oh, D. -S. Park, D. -H. Shin, K. S. Bae, K. -H. Son, and H. -Y. Park. 2009. Isolation and characterization of a cellulase-free endo-$\beta$-1,4- xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13. Proc. Biochem. 44: 1055- 1059.   DOI   ScienceOn
19 Kim, D. Y., S. -J. Ham, H. J. Lee, Y. -J. Kim, D. -H. Shin, Y. H. Rhee, K. -H. Son, and H. -Y. Park. 2011. Cloning and characterization of a modular GH5 $\beta$-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour. Technol. 102: 9185-9192.   DOI   ScienceOn