• Title/Summary/Keyword: bacterial culture filtrate

Search Result 63, Processing Time 0.024 seconds

Identification and Characterization of Paenibacillus polymyxa DY5 with Antifungal Activity against Crop Pathogenic Fungi (작물병원 진균에 대하여 항균 활성을 보이는 Paenibacillus polymyxa DY5의 동정 및 특성)

  • Kim, Hyo-Yoon;Weon, Hang-Yeon;Kim, Wan-Gyu;Yoo, Kwan-Hee
    • The Korean Journal of Mycology
    • /
    • v.37 no.2
    • /
    • pp.181-188
    • /
    • 2009
  • A Gram-positive, rod-shaped bacteria named DY5 was isolated from a peat sample collected from Daeam mountain in Korea. The culture filtrate of the bacterial isolate DY5 showed a broad spectrum of antifungal activity on various crop pathogenic fungi such as Trichoderma koningii, Fusarium oxysporum, Colletotrichum gloeosporioides, Sclerotinia sclerotiorum, Rhizoctonia solani AG-1(IA) For the identification of the DY5, morphological, biochemical, API 50 CHB test, analysis of fatty acid and molecular phylogenetic approaches were performed. The DY5 was found to be a member of the genus Paenibacillus on the basis of morphological and biochemical analysis. The 16S rRNA of DY5 showed high similarity(98%) with Paenibacillus polymyxa. On the basis of these results, the DY5 was identified as Paenibacillus polymyxa. Antifungal substance of the DY5 would be mild alkaline proteine molecule. The DY5 seems to have a great potential to be a biocontrol agent against various crop pathogens.

Isolation and characterization of bacilysin against Ralstonia solanacearum from Bacillus subtilis JW-1 (Bacillus subtilis JW-1 균주가 생산하는 bacilysin의 풋마름병 억제 효과 및 특성)

  • Kim, Shin-Duk
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.136-139
    • /
    • 2018
  • The inhibitory compound (Compound S) against Ralstonia solanacearum and its conversion product (Compound S') were isolated from the culture filtrate of Bacillus subtilis JW-1 using a series of chromatography procedures. The structures were elucidated as alanyl-L-${\beta}$-(2,3-epoxycyclohexyl-4-one)alanine and alanyl-L-${\beta}$-(2,3-dihydroxycyclohexyl-4-one)alanine, respectively on the basis of nuclear magnetic resonance spectral data, including $^1H$, $^{13}C$, $^1H-^1H$ correlation spectroscopy and heteronuclear multiple bond correlation spectroscopy. The compound S exhibited a broad antimicrobial activity against $G^+$, $G^-$ bacteria, Saccharomyces cerevisiae and Candida albicans. The activity loss of the conversion product revealed that the epoxy function was essential for activity of Compound S.

Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases

  • Ji, Seung Hyun;Paul, Narayan Chandra;Deng, Jian Xin;Kim, Young Sook;Yun, Bong-Sik;Yu, Seung Hun
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.234-242
    • /
    • 2013
  • A total of 62 bacterial isolates were obtained from Gomsohang mud flat, Mohang mud flat, and Jeju Island, Republic of Korea. Among them, the isolate CNU114001 showed significant antagonistic activity against pathogenic fungi by dual culture method. The isolate CNU114001 was identified as Bacillus amyloliquefaciens by morphological observation and molecular data analysis, including 16SrDNA and gyraseA (gyrA) gene sequences. Antifungal substances of the isolate were extracted and purified by silica gel column chromatography, thin layer chromatography, and high performance liquid chromatography. The heat and UV ray stable compound was identified as iturin, a lipopeptide (LP). The isolate CNU114001 showed broad spectrum activity against 12 phytopathogenic fungi by dual culture method. The semi purified compound significantly inhibits the mycelial growth of pathogenic fungi (Alternaria panax, Botrytis cinera, Colletotrichum orbiculare, Penicillium digitatum, Pyricularia grisea and Sclerotinia sclerotiorum) at 200 ppm concentration. Spore germ tube elongation of Botrytis cinerea was inhibited by culture filtrate of the isolate. Crude antifungal substance showed antagonistic activity against cucumber scleotiorum rot in laboratory, and showed antagonistic activity against tomato gray mold, cucumber, and pumpkin powdery mildew in greenhouse condition.

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

Isolation of Marine Bacteria Killing Red Tide Microalgae I. Isolation and Algicidal Properties of Micrococcus sp. LG-1 Possessing Killing Activity for Harmful Dinoflagellate, Cochlodinium polykrikoides (적조생물 살조세균 탐색 I. 유해 적조생물 Cochlodinium Polykrikoides 살조세균 Micrococcus sp. LG-1의 분리와 살조특성)

  • PARK Young-Tae;PARK Ji-Bin;CHUNG Seong-Youn;Song Byung-Chul;LIM Wol-Ae;KIM Chang-Hoon;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.767-773
    • /
    • 1998
  • In this study, we have investigated the distributions and killing effects of marine bacteria that tend to kill the red tide microalgae, C. polykikoides in the area of Masan bay from June to October, 1996. To summarize, C. polykikoides killing bacteria were detected at $10^2$ to $10^3$ cells/ml of seawater samples during the survey period, and the bloom was observed in September by containing $4.8\times10^3$cells/ml. It appears however that the number of these bacteria is decreased ($2.0\times10^2$cells/ml) in October, A total of 110 strains were isolated from seawater samples and seawater filtrate (pore size, 0.8 $\mu$m)-containing mixed culture of C. polykikoides in which the mixed culture was grown in f/2 medium. As results we have successfully isolated Micrococcus sp. LG-1 which decreased to less than 10cells/ml within 6days and 5days sfter inoculation of Micrococcus sp. LG-1 into the la9 and logarithmic growth phases of C. polykrikoides respectively. Therefore, it appears that inoculation of Micrococcus sp. LG-1 against the logarithmic C. polykrikoides is more effective than the lag growth phase, (n addition, the killing effects were increased in accordance with bacterial cell densities inoculated in a dose dependent manner. Especially, the filtrate of kitling bacterium culture (nore size, 0.2 $\mu$m) revealed a dramatic effect in which C. polykrikoides were decreased to less than 10 cells/mf of culture within 1 hr, 1,5 hrs, 1,5 hrs, 3.5 hrs. and 5,5 hrs after inoculations of the culture filtrate with concentration of $30\%,\;20\%,\;10\%,\;5\%$ and $2.5\%$, respectively. Moreover Micrococcus sp. LG-1 showed a selective specificity against C. polykrikoides and any other killing effects of Micrococcus sp. LG-1 were not observed against Alexandrium tamarense, Prorocentrum micans, Scrippsiella trochoidea. ana Gymnodinium sanguineum.

  • PDF

Biological Control of Root-Knot Nematodes by Organic Acid-Producing Lactobacillus brevis WiKim0069 Isolated from Kimchi

  • Seo, Hye Jeong;Park, Ae Ran;Kim, Seulbi;Yeon, Jehyeong;Yu, Nan Hee;Ha, Sanghyun;Chang, Ji Yoon;Park, Hae Woong;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.662-673
    • /
    • 2019
  • Root-knot nematodes (RKNs) are among the most destructive plant-parasites worldwide, and RKN control has been attempted mainly using chemical nematicides. However, these chemical nematicides have negative effects on humans and the environment, thus necessitating the search for eco-friendly alternative RKN control methods. Here, we screened nematicidal lactic acid bacteria (LAB) isolated from kimchi and evaluated their efficacy as biocontrol agents against RKNs. Of 237 bacterial strains, Lactobacillus brevis WiKim0069 showed the strongest nematicidal activity against the second-stage juveniles (J2) of Meloidogyne incognita, M. arenaria, and M. hapla and inhibited the egg hatch of M. incognita. The culture filtrate of WiKim0069 had a pH of 4.2 and contained acetic acid (11,190 ㎍/ml), lactic acid (7,790 ㎍/ml), malic acid (470 ㎍/ml), and succinic acid (660 ㎍/ml). An artificial mixture of the four organic acids produced by WiKim0069 also induced 98% M. incognita J2 mortality at a concentration of 1.25%, indicating that its nematicidal activity was derived mainly from the four organic acids. Application of WiKim0069 culture filtrate suppressed the formation of galls and egg masses on tomato roots by M. incognita in a dose-dependent manner in a pot experiment. The fermentation broth of WiKim0069 also reduced gall formation on melon under field conditions, with a higher efficacy (62.8%) than that of fosthiazate (32.8%). This study is the first report to identify the effectiveness of kimchi LAB against RKNs and to demonstrate that the organic acids produced by LAB can be used for the RKN management.

Purification and characterization of antifungal compounds produced by Bacillus subtilis KS1 (Bacillus subtilis KS1이 생산하는 항진균물질의 정제 및 특성)

  • Ryoo, Sung-Woo;Maeng, Hack-Young;Maeng, Pil-Jae
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.293-304
    • /
    • 1996
  • A bacterial strain, KSl, possessing strong antifungal activity was isolated from soil samples of ginseng fields and identified as Bacillus subtilis. In greenhouse test, the culture filtrate of B. subtilis KS1 showed strong protective effect against several fungal diseases of agricultural plants such as cucumber gray mold and wheat leaf rust. In addition, the crude butanol fraction of the culture filtrate exhibited antagonistic effect against several fungi including plant or human pathogens, such as Botrytis maydis, Chytridium lagenarium and Candida albicans. The antifungal compound, SW1, produced by B. subtilis KS1 was purified through consecutive chromatographic separations on a pep-RPC column and a ${\mu}$ Bondapak $C_{18}$ reverse phase column. Temperature and pH showed little effect on the stability of the compound in the ranges $-20-121^{\circ}C$ and pH 4.0-10.0, respectively. The composition and structural characteristics of SW1 were analysed by HPLC and by $^1H-,\;^1H-^1H-COSY$, NOESY, COSY-NOESY and HOHAHA NMR spectroscopy, respectively, which revealed that the compound belongs to iturin A, a typical cyclic antifungal compound produced by B. subtilis. In contrast to the previously reported iturin A compounds which have one or no $-CH_3$ side chain in the hydrophobic hydrocarbon chain of ${\beta}-amino$ acids, SW1 was shown to have a ${\beta}-amino$ acid containing 12-carbon skeleton with two $-CH_3$ side chains.

  • PDF

Properties of ${\beta}$-Galactosidase from Bacillus licheniformis Isolated from Cheongkookjang (청국장 유래 Bacillus licheniformis의 ${\beta}$-Galactosidase 특성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • A bacterial strain was isolated from homemade Cheongkookjang as a producer of the ${\beta}$-galactosidase, capable of hydrolyzing lactose to liberate galactose and glucose residues. The isolate YB-1105 has been identified as Bacillus licheniformis on the basis of its 16S rDNA sequence, morphology and biochemical properties. ${\beta}$-Galactosidase activity was detected in both the culture supernatant and the cell extract of B. licheniformis YB-1105. The enzymes of both fractions demonstrated maximum activity for hydrolysis of para-nitrophenyl-${\beta}$-D-galactopyranoside (pNP-${\beta}Gal$) under identical reaction conditions of pH 6.5 and $50^{\circ}C$. However, ${\beta}$-galactosidase activity from the culture filtrate was affected more than that from the cell free extract at acidic pHs and high temperatures. The hydrolyzing activity of both ${\beta}$-galactosidases for pNP-${\beta}Gal$ was dramatically decreased by the addition of low concentrations of galactose, but was only marginally decreased by high concentrations of glucose or mannose.

Control of Anthracnose and Gray Mold in Pepper Plants Using Culture Extract of White-Rot Fungus and Active Compound Schizostatin

  • Dutta, Swarnalee;Woo, E-Eum;Yu, Sang-Mi;Nagendran, Rajalingam;Yun, Bong-Sik;Lee, Yong Hoon
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Fungi produce various secondary metabolites that have beneficial and harmful effects on other organisms. Those bioactive metabolites have been explored as potential medicinal and antimicrobial resources. However, the activities of the culture filtrate (CF) and metabolites of whiterot fungus (Schizophyllum commune) have been underexplored. In this study, we assayed the antimicrobial activities of CF obtained from white-rot fungus against various plant pathogens and evaluated its efficacy for controlling anthracnose and gray mold in pepper plants. The CF inhibited the mycelial growth of various fungal plant pathogens, but not of bacterial pathogens. Diluted concentrations of CF significantly suppressed the severity of anthracnose and gray mold in pepper fruits. Furthermore, the incidence of anthracnose in field conditions was reduced by treatment with a 12.5% dilution of CF. The active compound responsible for the antifungal and disease control activity was identified and verified as schizostatin. Our results indicate that the CF of white-rot fungus can be used as an eco-friendly natural product against fungal plant pathogens. Moreover, the compound, schizostatin could be used as a biochemical resource or precursor for development as a pesticide. To the best of our knowledge, this is the first report on the control of plant diseases using CF and active compound from white-rot fungus. We discussed the controversial antagonistic activity of schizostatin and believe that the CF of white-rot fungus or its active compound, schizostatin, could be used as a biochemical pesticide against fungal diseases such as anthracnose and gray mold in many vegetables.

Identification and Characterization of Paenibacillus polymyxa DY1 Isolated from Korean Soil with New Antibacterial Activity (새로운 항균활성을 보이는 토양 분리 세균 Paenibacillus polymyxa DY1의 분류와 동정)

  • Shin, Eun-Seok;Lee, Hee-Moo;Lee, Bok-Kwon;Kim, Sung-Hoon;Kwon, Sun-Il;Yoo, Kwan-Hee
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • The DY1 strain of Gram-positive, rod-shaped bacteria was isolated from the soil sample collected from Daeam mountain, Korea. The culture filtrate of DY1 strain showed a broad spectrum of antimicrobial activity on various pathogenic and food poisoning enteric bacterial species tested in vitro. It showed significant growth-inhibitory effect on Salmonella enterica sp., Shigella sp., pathogenic Escherichia coli, Vibrio cholerae, Vibrio parahemolyticus, and Yersinia enterocolitica. For the identification of the DY1 strain, morphological, biochemical and molecular phylogenetic approaches were performed. The DY1 strain was found to be a member of the genus Paenibacillus on the basis of morphological and biochemical analyses. The 16S rDNA of DY1 showed the highest pairwise identity with Paenibacillus polymyxa with 99.79% (1,413 bp/1,416 bp). The antimicrobial entity from DY1 looked different from preciously reported ones and seems to have a great potential to be further studied as a candidate of new antibiotics to control multi-drug resistant pathogens.