Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.08.2019.0225

Biological Control of Root-Knot Nematodes by Organic Acid-Producing Lactobacillus brevis WiKim0069 Isolated from Kimchi  

Seo, Hye Jeong (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University)
Park, Ae Ran (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University)
Kim, Seulbi (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University)
Yeon, Jehyeong (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University)
Yu, Nan Hee (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University)
Ha, Sanghyun (R&D Division, World Institute of Kimchi)
Chang, Ji Yoon (R&D Division, World Institute of Kimchi)
Park, Hae Woong (R&D Division, World Institute of Kimchi)
Kim, Jin-Cheol (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University)
Publication Information
The Plant Pathology Journal / v.35, no.6, 2019 , pp. 662-673 More about this Journal
Abstract
Root-knot nematodes (RKNs) are among the most destructive plant-parasites worldwide, and RKN control has been attempted mainly using chemical nematicides. However, these chemical nematicides have negative effects on humans and the environment, thus necessitating the search for eco-friendly alternative RKN control methods. Here, we screened nematicidal lactic acid bacteria (LAB) isolated from kimchi and evaluated their efficacy as biocontrol agents against RKNs. Of 237 bacterial strains, Lactobacillus brevis WiKim0069 showed the strongest nematicidal activity against the second-stage juveniles (J2) of Meloidogyne incognita, M. arenaria, and M. hapla and inhibited the egg hatch of M. incognita. The culture filtrate of WiKim0069 had a pH of 4.2 and contained acetic acid (11,190 ㎍/ml), lactic acid (7,790 ㎍/ml), malic acid (470 ㎍/ml), and succinic acid (660 ㎍/ml). An artificial mixture of the four organic acids produced by WiKim0069 also induced 98% M. incognita J2 mortality at a concentration of 1.25%, indicating that its nematicidal activity was derived mainly from the four organic acids. Application of WiKim0069 culture filtrate suppressed the formation of galls and egg masses on tomato roots by M. incognita in a dose-dependent manner in a pot experiment. The fermentation broth of WiKim0069 also reduced gall formation on melon under field conditions, with a higher efficacy (62.8%) than that of fosthiazate (32.8%). This study is the first report to identify the effectiveness of kimchi LAB against RKNs and to demonstrate that the organic acids produced by LAB can be used for the RKN management.
Keywords
lactic acid bacteria; Lactobacillus brevis; Meloidogyne spp.; nematicidal activity; organic acid;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Shrestha, A., Kim, B. S. and Park, D. H. 2014. Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Sci. Technol. 24:763-779.   DOI
2 Sitton, J. W. and Patterson, M. E. 1992. Effect of high-carbon dioxide and low-oxygen controlled atmospheres on postharvest decays of apples. Plant Dis. 76:992-995.   DOI
3 Stiles, M. E. and Holzapfel, W. H. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36:1-29.   DOI
4 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.   DOI
5 Terefe, M., Tefera, T. and Sakhuja, P. K. 2009. Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J. Invertebr. Pathol. 100:94-99.   DOI
6 Trias, R., Baneras, L., Montesinos, E. and Badosa, E. 2008. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 11:231-236.
7 Abdel-Aziz, S. M., Moustafa, Y. A. and Hamed, H. A. 2014. Lactic acid bacteria in the green biocontrol against some phytopathogenic fungi: treatment of tomato seeds. J. Basic Appl. Sci. Res. 4:1-9.
8 Akhtar, M. and Malik, A. 2000. Roles of organic soil amendments and soil organisms in the biological control of plantparasitic nematodes: a review. Bioresour. Technol. 74:35-47.   DOI
9 Aktar, M. W., Sengupta, D. and Chowdhury, A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2:1-12.   DOI
10 Ashoub, A. H. and Amara, M. T. 2010. Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. J. Am. Sci. 6:321-328.
11 Bansal, R. K. and Bajaj, A. 2003. Effect of volatile fatty acids on embryogenesis and hatching of Meloidogyne incognita eggs. Nematol. Mediterr. 31:135-140.
12 Barefoot, S. F. and Klaenhammer, T. R. 1983. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45:1808-1815.   DOI
13 Barker, K. R. 1985. Nematode extractions and bioassays. In: An advanced treatise on Meloidogyne, Vol. II. Methodology, eds. by K. R. Barker, C. C. Carter, J. N. Sasser, pp. 19-35. North Carolina State University Graphics, Raleigh, NC, USA.
14 Blok, V. C., Jones, J. T., Phillips, M. S. and Trudgill, D. L. 2008. Parasitism genes and host range disparities in biotrophic nematodes: the conundrum of polyphagy versus specialisation. BioEssays 30:249-259.   DOI
15 Cayrol, J.-C., Djian, C. and Pijarowski, L. 1989. Study of the nematocidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev. Nematol. 12:331-336.
16 Lee, Y. S., Naning, K. W., Nguyen, X. H., Kim, S. B., Moon, J. H. and Kim, K. Y. 2014. Ovicidal activity of lactic acid produced by Lysobacter capsici YS1215 on eggs of root-knot nematode, Meloidogyne incognita. J. Microbiol. Biotechnol. 24:1510-1515.   DOI
17 Trudgill, D. L. and Blok, V. C. 2001. Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol 39:53-77.   DOI
18 Viglierchio, D. R. and Schmitt, R. V. 1983. On the methodology of nematode extraction from field samples: Baermann funnel modifications. J. Nematol. 15:438-444.
19 Visser, R. and Holzapfel, W. H. 1992. Lactic acid bacteria in the control of plant pathogens. In: The Lactic Acid Bacteria. Vol. 1, ed. by B. J. B. Wood, pp. 193-210. Springer, Boston, MA, USA.
20 Abbott, W. S. 1925. A method of computing the effectiveness of and insecticide. J. Econ. Entomol. 18:265-267.   DOI
21 Lim, J.-H., Yoon, S.-M., Tan, P.-L., Yang, S., Kim, S.-H. and Park, H.-J. 2018. Probiotic properties of Lactobacillus Plantarum LRCC5193, a plant-origin lactic acid bacterium isolated from kimchi and its use in chocolates. J. Food Sci. 83:2802-2811.   DOI
22 Limanska, N., Korotaeva, N., Biscola, V., Ivanytsia, T., Merlich, A., Franco, B. D. G. M. and Haertle, T. 2015. Study of the potential application of lactic acid bacteria in the control of infection caused by Agrobacterium tumefaciens. J. Plant Pathol. Microbiol. 6:292.
23 Lindgren, S. E., Axelsson, L. T. and McFeeters, R. F. 1990. Anaerobic L-lactate degradation by Lactobacillus plantarum. FEMS Microbiol. Lett. 66:209-213.
24 Lindgren, S. E. and Dobrogosz, W. J. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 7:149-163.   DOI
25 McBride, R. G., Mikkelsen, R. L. and Barker, K. R. 2000. The role of low molecular weight organic acids from decomposing rye in inhibiting root-knot nematode populations in soil. Appl. Soil Ecol. 15:243-251.   DOI
26 Meyer, S. L. F., Massoud, S. I., Chitwood, D. J. and Roberts, D. P. 2000. Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871-879.   DOI
27 Moens, M., Perry, R. N. and Starr, J. L. 2009. Meloidogyne species: a diverse group of novel and important plant parasites. In: Root-knot nematodes, eds. by R. N. Perry, J. L. Starr and M. Moens, pp. 1-17. CAB International, London, UK.
28 Driehuis, F., Elferink, S. J. and Spoelstra, S. F. 1999. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 87:583-594.   DOI
29 Choi, A.-R., Patra, J. K., Kim, W. J. and Kang, S.-S. 2018. Antagonistic activities and probiotic potential of lactic acid bacteria derived from a plant-based fermented food. Front. Microbiol. 9:1963.   DOI
30 da Cunha, M. V. and Foster, M. A. 1992. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate. J. Bacteriol. 174:1013-1019.   DOI
31 El-Mabrok, A. S. W., Hassan, Z., Mokhtar, A. M., Hussain, K. M. A. and Kahar, F. K. S. B. A. 2012. Screening of lactic acid bacteria as biocontrol against (Collectotrichum capsici) on chilli Bangi. Res. J. Appl. Sci. 7:446-473.
32 Elling, A. A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology 103:1092-1102.   DOI
33 Favre-Bonvin, J., Ponchet, M., Djian, C., Arpin, N. and Pijarowski, L. 1991. Acetic acid: a selective nematicidal metabolite from culture filtrates of Paecilomyces lilacinus (Thom) Samson and Trichoderma longibrachiatum Rifai. Nematologica 37:101-112.   DOI
34 Ghazvini, R. D., Kouhsari, E., Zibafar, E., Hashemi, S. J., Amini, A. and Niknejad, F. 2016. Antifungal activity and aflatoxin degradation of Bifidobacterium bifidum and Lactobacillus fermentum against toxigenic Aspergillus parasiticus. Open Microbiol. J. 10:197-201.   DOI
35 Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 7:175-188.   DOI
36 Zuckerman, B. M., Matheny, M. and Acosta, N. 1994. Control of plant-parasitic nematodes by a nematicidal strain of Aspergillus niger. J. Chem. Ecol. 20:33-43.   DOI
37 Guarner, F., Khan, A. G., Garisch, J., Eliakim, R., Gangl, A., Thomson, A., Krabshuis, J., Lemair, T., Kaufmann, P., de Paula, J. A., Fedorak, R., Shanahan, F., Sanders, M. E., Szajewska, H., Ramakrishna, B. S., Karakan, T., Kim, N. and World Gastroenterology Organization. 2012. World Gastroenterology Organisation global guidelines: probiotics and prebiotics October 2011. J. Clin. Gastroenterol. 46:468-481.   DOI
38 Wodzki, R. and Nowaczyk, J. 2001. Membrane transport of organics. III. Permeation of some carboxylic acids through bipolar polymer membrane. J. Appl. Polym. Sci. 80:2705-2717.   DOI
39 Yadav, U. 2017. Recent trends in nematode management practices: the Indian context. Int. Res. J. Eng. Technol. 4:482-489.
40 Yeon, J., Park, A. R., Kim, Y. J., Seo, H. J., Yu, N. H., Ha, S., Park, H. W. and Kim, J.-C. 2019. Control of root-knot nematodes by a mixture of maleic acid and copper sulfate. Appl. Soil Ecol. 141:61-68.   DOI
41 Jang, J. Y., Choi, Y. H., Shin, T. S., Kim, T. H., Shin, K.-S., Park, H. W., Kim, Y. H., Kim, H., Choi, G. J., Jang, K. S., Cha, B., Kim, I. S., Myung, E. J. and Kim, J.-C. 2016. Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS ONE 11:e0156230.   DOI
42 Hamed, H. A., Moustafa, Y. A. and Abdel-Aziz, S. M. 2011. In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant. Life Sci. J. 8:462-468.
43 Holbrook, C. C., Knauft, D. A. and Dickson, D. W. 1983. A technique for screening peanut for resistance to Meloidogyne arenaria. Plant Dis. 67:957-958.   DOI
44 Hwang, S. M., Park, M. S., Kim, J.-C., Jang, K. S., Choi, Y. H. and Choi, G. J. 2014. Occurrence of Meloidogyne incognita infecting resistant cultivars and development of an efficient screening method for resistant tomato to the Mi-virulent nematode. Korean J. Hortic. Sci. Technol. 32:217-226.   DOI
45 Jang, S.-E., Hyun, Y.-J., Oh, Y.-J., Choi, K. B., Kim, T., Yeo, I. H., Han, M. J. and Kim, D.-H. 2011. Adhesion activity of Lactobacillus plantarum PM 008 isolated from kimchi on the intestine of mice. J. Bacteriol. Virol. 41:83-90.   DOI
46 Jenkins, W. R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis. Rep. 48:692.
47 Ntalli, N., Ratajczak, M., Oplos, C., Menkissoglu-Spiroudi, U. and Adamski, Z. 2016. Acetic acid, 2-undecanone, and (e)-2-decenal ultrastructural malformations on Meloidogyne incognita. J. Nematol. 48:248-260.   DOI
48 Molinari, S. 2009. Antioxidant enzymes in (a)virulent populations of root-knot nematodes. Nematology 11:689-697.   DOI
49 Molinari, S., Fanelli, E. and Leonetti, P. 2014. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to rootknot nematodes. Mol. Plant Pathol. 15:255-264.   DOI
50 Naseby, D. C., Pascual, J. A. and Lynch, J. M. 2000. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J. Appl. Microbiol. 88:161-169.   DOI
51 Park, J., Seo, Y. and Kim, Y. H. 2014. Biological control of Meloidogyne hapla using an antagonistic bacterium. Plant Pathol. J. 30:288-298.   DOI
52 Prusky, D., Kobiler, I., Akerman, M. and Miyara, I. 2006. Effect of acidic solutions and acidic prochloraz on the control of postharvest decay caused by Alternaria alternata in mango and persimmon fruit. Postharvest Biol. Technol. 42:134-141.   DOI
53 Ralmi, N. H. A. A., Khandaker, M. M. and Mat, N. 2016. Occurrence and control of root knot nematode in crops: a review. Aust. J. Crop Sci. 10:1649-1654.   DOI
54 Schneider, P. and Orelli, O. 1947. Entomologisches praktikum [Entomological internship]. Verlag. H. R. Sauerlander Co., Aarau, Switzerland. 237 pp.
55 Seo, Y. and Kim, Y. H. 2014. Control of Meloidogyne incognita using mixtures of organic acids. Plant Pathol. J. 30:450-455.   DOI
56 Khanafari, A., Soudi, H. and Miraboulfathi, M. 2007. Biocontrol of Aspergillus flavus and aflatoxin B1 production in corn. Iran. J. Environ. Health Sci. Eng. 4:163-168.
57 Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J. E., Wesemael, W. M. L. and Perry, R. N. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14:946-961.   DOI
58 Jung, J. Y., Lee, S. H., Kim, J. M., Park, M. S., Bae, J.-W., Hahn, Y., Madsen, E. L. and Jeon, C. O. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77:2264-2274.   DOI
59 Kandler, O., Schillinger, U. and Weiss, N. 1983. Lactobacillus bifermentans sp. nov., nom. rev., an organism forming $CO_2$ and $H_2$ from lactic acid. Syst. Appl. Microbiol. 4:408-412.   DOI
60 Kim, D.-G., Lee, Y.-K. and Park, B.-Y. 2001. Root-knot nematode species distributing in greenhouses and their simple identification scheme. Res. Plant Dis. 7:49-55 (in Korean).
61 Kim, T. Y., Jang, J. Y., Jeon, S. J., Lee, H. W., Bae, C.-H., Yeo, J. H., Lee, H. B., Kim, I. S., Park, H. W. and Kim, J.-C. 2016. Nematicidal activity of kojic acid produced by Aspergillus oryzae against Meloidogyne incognita. J. Microbiol. Biotechnol 26:1383-1391.   DOI
62 Konappa, N. M., Maria, M., Uzma, F., Krishnamurthy, S., Nayaka, S. C., Niranjana, S. R. and Chowdappa, S. 2016. Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Sci. Hortic. 207:183-192.   DOI
63 Kormin, S., Rusul, G., Radu, S. and Ling, F. H. 2001. Bacteriocin-producing lactic acid bacteria isolated from traditional fermented food. Malays. J. Med. Sci. 8:63-68.