• 제목/요약/키워드: bacterial community profiling

검색결과 20건 처리시간 0.026초

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.

Characteristics of Bacterial Communities in Biological Filters of Full-Scale Drinking Water Treatment Plants

  • Choi, Yonkyu;Cha, Yeongseop;Kim, Bogsoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.91-104
    • /
    • 2019
  • The taxonomic and functional characteristics of bacterial communities in the pre-chlorinated rapid filters and ozonated biological activated carbon (BAC) filters were compared using Illumina MiSeq sequencing of the 16S rRNA gene and community-level physiological profiling (CLPP) based on sole-carbon-source utilization patterns. Both the rapid filters and BAC filters were dominated by Rhizobiales within ${\alpha}-proteobacteria$, but other abundant orders and genera were significantly different in both types of filter. Firmicutes were abundant only in the intermediate chlorinated rapid filter, while Acidobacteria were abundant only in the BAC filters. Bacterial communities in the rapid filter showed high utilization of carbohydrates, while those in the BAC filters showed high utilization of polymers and carboxylic acids. These different characteristics of the bacterial communities could be related to the different substrates in the influents, filling materials, and residual disinfectants. Chlorination and ozonation inactivated the existing bacteria in the influent and formed different bacterial communities, which could be resistant to the oxidants and effectively utilize different substrates produced by the oxidant, including Phreatobacter in the rapid filters and Hyphomicrobium in the BAC filters. Bradyrhizobium and Leptothrix, which could utilize compounds adsorbed on the GAC, were abundant in the BAC filters. Ozonation increased taxonomic diversity but decreased functional diversity of the bacterial communities in the BAC filters. This study provides some new insights into the effects of oxidation processes and filling materials on the bacterial community structure in the biological filters of drinking water treatment plants.

Unveiling the Bacterial Community across the Stomach, Hepatopancreas, Anterior Intestine, and Posterior Intestine of Pacific Whiteleg Shrimp

  • Dhiraj Kumar Chaudhary;Sang-Eon Kim;Hye-Jin Park;Kyoung-Ho Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1260-1269
    • /
    • 2024
  • The gastrointestinal (GI) tract of shrimp, which is comprised of the stomach, hepatopancreas, and intestine, houses microbial communities that play crucial roles in immune defense, nutrient absorption, and overall health. While the intestine's microbiome has been well-studied, there has been limited research investigating the stomach and hepatopancreas. The present study addresses this gap by profiling the bacterial community in these interconnected GI segments of Pacific whiteleg shrimp. To this end, shrimp samples were collected from a local aquaculture farm in South Korea, and 16S rRNA gene amplicon sequencing was performed. The results revealed significant variations in bacterial diversity and composition among GI segments. The stomach and hepatopancreas exhibited higher Proteobacteria abundance, while the intestine showed a more diverse microbiome, including Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Chloroflexi, and Verrucomicrobia. Genera such as Oceaniovalibus, Streptococcus, Actibacter, Ilumatobacter, and Litorilinea dominated the intestine, while Salinarimonas, Sphingomonas, and Oceaniovalibus prevailed in the stomach and hepatopancreas. It is particularly notable that Salinarimonas, which is associated with nitrate reduction and pollutant degradation, was prominent in the hepatopancreas. Overall, this study provides insights into the microbial ecology of the Pacific whiteleg shrimp's GI tract, thus enhancing our understanding of shrimp health with the aim of supporting sustainable aquaculture practices.

열대 해양 해면 Cinachyrella sp.와 Plakortis sp.의 공생세균 군집의 계통학적 다양성 (Phylogenetic diversity of bacterial community associated with the tropical marine sponges, Cinachyrella sp. and Plakortis sp.)

  • 정종빈;박진숙
    • 미생물학회지
    • /
    • 제51권1호
    • /
    • pp.31-38
    • /
    • 2015
  • 2012년 2월 남태평양 미크로네시아 축(Chuuk)에서 채집한 두 종의 해양해면 Cinachyrella sp.와 Plakortis sp.의 공생세균의 군집구조를 PCR-DGGE 방법을 사용하여 조사하였다. Cinachyrella sp.와 Plakortis sp. 해면의 total genomic DNA에서 16S rRNA gene-V3 부분을 증폭하여 DGGE를 수행하였으며, 두 종의 해면에서 서로 다른 밴드 패턴이 나타났다. DGGE밴드로부터 16S rRNA gene의 부분 염기서열을 분석한 결과, 알려진 균주의 염기서열들과 87-100%의 유사도를 나타내었다. Cinachyrella sp.의 공생세균 군집구조는 Actinobacteria, Bacteroidetes, Chloroflexi, 그리고 Proteobacteria (Alpha-, Gamma-, Delta-), 6강으로 구성되었다. Plakortis sp.의 공생세균 군집구조는 Actinobacteria, Chloroflexi, Firmicutes, Spirochaetes 그리고 Proteobacteria (Alpha-, Gamma-, Delta-), 7강으로 구성되었다. 두 종의 해면에서 Actinobacteria, Chloroflexi와 Proteobacteria가 공통적으로 존재하였으나 주요 세균군집은 서로 다른 것으로 나타났다. 즉 Cinachyrella sp.의 경우 Proteobacteria가, Plakortis sp.의 경우, Chloroflexi가 주요 세균 군집이었다. 동일지역에서 채집한 서로 다른 두 종의 해면은 각각 다른 공생세균 군집구조를 나타내어 해면 종에 따른 숙주 특이적 분포를 보이는 것으로 나타났다.

16S rDNA-DGGE를 이용한 2종의 제주도 해양 해면의 공생세균의 군집 구조 (Community Structure of Bacteria Associated with Two Marine Sponges from Jeju Island Based on 16S rDNA-DGGE Profiles)

  • 박진숙;심정자;안광득
    • 미생물학회지
    • /
    • 제45권2호
    • /
    • pp.170-176
    • /
    • 2009
  • 제주도에 서식하는 2종의 해양 해면, Dictyonella sp.와 Spirastrella abata의 공생세균 군집구조를 16S rDNA-DGGE(denaturing gradient gel electrophoresis) 방법에 의해 분석하였다. 해면으로부터 total genomic DNA를 추출하여 GC clamp가 추가된 세균에 특이적인 341f primer와 518r primer를 이용하여 16S rRNA gene의 V3 부위를 증폭한 후 DGGE 전기 영동하고 재증폭하여 염기서열을 분석하였다. 그 결과 Dictyonella sp.에서 8개, Spirastrella abata에서 7개의 band를 확인할 수 있었다. 공통된 주요 band가 없는 패턴을 나타내었으며, DGGE band로부터 DNA를 추출하여 부분 염기서열을 분석한 결과, NCBI에 등록된 서열들과 93%~98%의 유사도를 나타내었다. Dictyonella sp.의 주요 해면 공생세균은 uncultured Gammaproteobacteria, Spirastrella abata의 경우 uncultured Alphaproteobacteria, Firmicutes에 각각 포함되어 해면 종에 따른 숙주 특이적 분포를 보이는 것으로 나타났다.

Pyrosequencing을 이용한 전통된장 제조과정 중 세균군집구조의 분석 (Bacterial Community Profiling during the Manufacturing Process of Traditional Soybean Paste by Pyrosequencing Method)

  • 김용상;정도연;황영태;엄태붕
    • 미생물학회지
    • /
    • 제47권3호
    • /
    • pp.275-280
    • /
    • 2011
  • 전통 방식으로 된장을 만드는 과정 동안 세균군집의 다양성과 변화를 관찰하기 위하여 16S rRNA 유전자 서열을 기반으로 하는 pyrosequencing을 수행하였다. 전통 된장 제조에 가장 중요한 접종원으로서 볏짚에 존재하는 세균 군집을 문수준에서 확인했을 때, 상대적 군집 비율로 1% 이상의 분포를 보였던 4종류는 Proteobacteria (71%), Actinobacteria (20.6%), Bacteroidetes (4.2%), Firmicutes (1.3%) 문이었다. 그러나 볏짚 세균 군집구조 결과와 달리 메주의 군집구조에서는 99.1%가 Firmicutes 문이었다. 문 수준에서 숙성 전 된장의 군집분포를 보면 Firmicutes 문 비율이 99.85%로 메주와 비슷한 수준이었다. 그러나 종 수준의 군집구조에서는 메주에서 32.54%의 가장 높은 군집빈도를 보였던 Bacillus siamensis는 0.1%로 거의 사라진 반면 B. amyloliquefaciens가 63.64%로 가장 높은 우점종이 되었다. 숙성 후 된장의 세균군집구조를 보면 숙성 전에 비해 Bacillus 비율이 증가되었으며 이들 중 군집의 상대밀도가 가장 높았던 우점종은 B. amyloliquefaciens (67.3%)였고, 5위까지 모두 Bacillus 종들(전체 군집분포의 92.2%)이 차지했다. 또한 메주 내 상위 11 위까지 우점을 이루던 세균 종들 중 10종이 숙성 후 된장에서도 우점종을 형성하여, 메주 미생물들이 숙성 후 된장 발효까지 영향을 준다는 것을 보였다. 이 결과들로부터 전통 장류에서 발효 주 세균은 Bacillus 종이며 이들은 기본적으로 볏짚으로부터 기원되어 메주에서 우점종을 형성한 것으로 추정되었다. 따라서 풍미와 위생성이 동시에 요구되는 전통 장류의 제조를 위해서는 볏짚 표면에 이 기능을 가진 Bacillus 종들의 군집 분포가 필요할 것으로 예상되었다.

Molecular Profiling of Rhizosphere Bacterial Communities Associated with Prosopis juliflora and Parthenium hysterophorus

  • Jothibasu, K.;Chinnadurai, C.;Sundaram, S.P.;Kumar, K.;Balachandar, D.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.301-310
    • /
    • 2012
  • Prosopis juliflora and Parthenium hysterophorus are the two arid, exotic weeds of India that are characterized by distinct, profuse growth even in nutritionally poor soils and environmentally stressed conditions. Owing to the exceptional growth nature of these two plants, they are believed to harbor some novel bacterial communities with wide adaptability in their rhizosphere. Hence, in the present study, the bacterial communities associated with the rhizosphere of Prosopis and Parthenium were characterized by clonal 16S rRNA gene sequence analysis. The culturable microbial counts in the rhizosphere of these two plants were higher than bulk soils, possibly influenced by the root exudates of these two plants. The phylogenetic analysis of V1_V2 domains of the 16S rRNA gene indicated a wider range of bacterial communities present in the rhizosphere of these two plants than in bulk soils and the predominant genera included Acidobacteria, Gammaproteobacteria, and Bacteriodetes in the rhizosphere of Prosopis, and Acidobacteria, Betaproteobacteria, and Nitrospirae in the Parthenium rhizosphere. The diversity of bacterial communities was more pronounced in the Parthenium rhizosphere than in the Prosopis rhizosphere. This culture-independent bacterial analysis offered extensive possibilities of unraveling novel microbes in the rhizospheres of Prosopis and Parthenium with genes for diverse functions, which could be exploited for nutrient transformation and stress tolerance in cultivated crops.

Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System

  • Chen, Lihua;Zhu, Xuan;Zhang, Menglu;Wang, Yuxin;Lv, Tianyu;Zhang, Shenghua;Yu, Xin
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.995-1004
    • /
    • 2017
  • Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of $2.14{\times}10^7copies/100ml$ in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

Metabolite Profiling and Microbial Community of Traditional Meju Show Primary and Secondary Metabolite Differences Correlated with Antioxidant Activities

  • Song, Da Hye;Chun, Byung Hee;Lee, Sunmin;Reddy, Chagam Koteswara;Jeon, Che Ok;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1697-1705
    • /
    • 2020
  • Meju, a type of fermented soybean paste, is used as a starter in the preparation of various Korean traditional soybean-based foods. In this study, we performed Illumina-MiSeq paired-end sequencing for microbial communities and mass spectrometry analysis for metabolite profiling to investigate the differences between 11 traditional meju products from different regions across Korea. Even though the bacterial and fungal communities showed remarkable variety, major genera including Bacillus, Enterococcus, Variovorax, Pediococcus, Weissella, and Aspergillus were detected in every sample of meju. The metabolite profile patterns of the 11 samples were clustered into two main groups: group I (M1-5) and group II (M6-11). The metabolite analysis indicated a relatively higher amino acid content in group I, while group II exhibited higher isoflavone, soyasaponin, and lysophospholipid contents. The bioactivity analysis proved that the ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was higher in group II and the FRAP (ferric reducing antioxidant power) activity was higher in group I. The correlation analysis revealed that the ABTS activity was isoflavonoid, lipid, and soyasaponin related, whereas the FRAP activity was amino acid and flavonoid related. These results suggest that the antioxidant activities of meju are critically influenced by the microbiome and metabolite dynamics.

Composition and Diversity of Gut Bacteria Associated with the Eri Silk Moth, Samia ricini, (Lepidoptera: Saturniidae) as Revealed by Culture-Dependent and Metagenomics Analysis

  • MsangoSoko, Kondwani;Gandotra, Sakshi;Chandel, Rahul Kumar;Sharma, Kirti;Ramakrishinan, Balasubramanian;Subramanian, Sabtharishi
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1367-1378
    • /
    • 2020
  • The polyphagous eri silk moth, Samia ricini, is associated with various symbiotic gut bacteria believed to provide several benefits to the host. The larvae of S. ricini were subjected to isolation of gut bacteria using culture-dependent 16S rRNA generic characterization, metagenomics analysis and qualitative enzymatic assays. Sixty culturable aerobic gut bacterial isolates comprising Firmicutes (54%) and Proteobacteria (46%); and twelve culturable facultative anaerobic bacteria comprising Proteobacteria (92%) and Firmicutes (8%) were identified inhabiting the gut of S. ricini. The results of metagenomics analysis revealed the presence of a diverse community of both culturable and un-culturable gut bacteria belonging to Proteobacteria (60%) and Firmicutes (20%) associated with seven orders. An analysis of the results of culturable isolation indicates that these bacterial isolates inhabited all the three compartments of the gut. Investigation on persistence of bacteria coupled with metagenomics analysis of the fifth instar suggested that bacteria persist in the gut across the different instar stages. In addition, enzymatic assays indicated that 48 and 75% of culturable aerobic, and 75% of anaerobic gut bacterial isolates had cellulolytic, lipolytic and nitrate reductase activities, thus suggesting that they may be involved in food digestion and nutritional provision to the host. These bacterial isolates may be good sources for profiling novel genes and biomolecules for biotechnological application.