Browse > Article
http://dx.doi.org/10.4014/jmb.1109.09025

Molecular Profiling of Rhizosphere Bacterial Communities Associated with Prosopis juliflora and Parthenium hysterophorus  

Jothibasu, K. (Department of Agricultural Microbiology, Tamil Nadu Agricultural University)
Chinnadurai, C. (Department of Agricultural Microbiology, Tamil Nadu Agricultural University)
Sundaram, S.P. (Department of Agricultural Microbiology, Agricultural College and Research Institute)
Kumar, K. (Department of Agricultural Microbiology, Tamil Nadu Agricultural University)
Balachandar, D. (Department of Agricultural Microbiology, Tamil Nadu Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.3, 2012 , pp. 301-310 More about this Journal
Abstract
Prosopis juliflora and Parthenium hysterophorus are the two arid, exotic weeds of India that are characterized by distinct, profuse growth even in nutritionally poor soils and environmentally stressed conditions. Owing to the exceptional growth nature of these two plants, they are believed to harbor some novel bacterial communities with wide adaptability in their rhizosphere. Hence, in the present study, the bacterial communities associated with the rhizosphere of Prosopis and Parthenium were characterized by clonal 16S rRNA gene sequence analysis. The culturable microbial counts in the rhizosphere of these two plants were higher than bulk soils, possibly influenced by the root exudates of these two plants. The phylogenetic analysis of V1_V2 domains of the 16S rRNA gene indicated a wider range of bacterial communities present in the rhizosphere of these two plants than in bulk soils and the predominant genera included Acidobacteria, Gammaproteobacteria, and Bacteriodetes in the rhizosphere of Prosopis, and Acidobacteria, Betaproteobacteria, and Nitrospirae in the Parthenium rhizosphere. The diversity of bacterial communities was more pronounced in the Parthenium rhizosphere than in the Prosopis rhizosphere. This culture-independent bacterial analysis offered extensive possibilities of unraveling novel microbes in the rhizospheres of Prosopis and Parthenium with genes for diverse functions, which could be exploited for nutrient transformation and stress tolerance in cultivated crops.
Keywords
16S rRNA gene; metagenomic DNA; Prosopis; Parthenium; rhizosphere bacterial community;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bagwell, C. E. and C. R. Lovell. 2000. Microdiversity of culturable diazotrophs from the rhizoplanes of the salt marsh grasses Spartina alterniflora and Juncus roemerianus. Microbial Ecol. 39: 128-136.   DOI   ScienceOn
2 Bagwell, C. E., Y. M. Piceno, A. Ashburne-Lucas, and C. R. Lovell. 1998. Physiological diversity of the rhizosphere diazotroph assemblages of selected salt marsh grasses Appl. Environ. Microbiol. 64: 4276-4282.
3 Bais, H. P., S. W. Park, T. L. Weir, R. M. Callaway, and J. M. Vivanco. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26-32.   DOI   ScienceOn
4 Bashour, I. I. and A. H. Sayegh. 2007. Methods of Analysis for Soils of Arid and Semi-Arid Regions. Food and Agricultural Organization of United Nations, Rome.
5 Bhojvaid, P. P., V. R. Timmer, and G. Singh. 1996. Reclaiming sodic soils for wheat production by Prosopis juliflora (Swartz) DC afforestation in India. Agroforestry Systems 34: 139-150.   DOI   ScienceOn
6 Butler, J. L., M. A. Williams, P. J. Bottomley, and D. D. Myrold. 2003. Microbial community dynamics associated with rhizosphere carbon flow. Appl. Environ. Microbiol. 69: 6793-6800.   DOI   ScienceOn
7 Cardon, Z. G. and D. J. Gage. 2006. Resource exchange in the rhizosphere: Molecular tools and the microbial perspective. Annu. Rev. Ecol. Evol. Syst. 37: 459-488.   DOI   ScienceOn
8 Chiron, R., H. Marchandin, F. Counil, E. J. Bilak, A. M. Freydiere, G. Bellon, et al. 2005. Clinical and microbiological features of Inquilinus sp. isolates from five patients with cystic fibrosis. J. Clin. Microbiol. 43: 3938-3943.   DOI   ScienceOn
9 Chowdhury, S. P., M. Schmid, A. Hartmann, and A. K. Tripathi. 2009. Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur. J. Soil Biol. 45: 114-122.   DOI   ScienceOn
10 Cibichakravarthy, B., R. Preetha, S. P. Sundaram, K. Kumar, and D. Balachandar. 2011. Diazotrophic diversity in the rhizosphere of two exotic weed plants, Prosopis juliflora and Parthenium hysterophorus. World J. Microbiol. Biotechnol. DOI 10.1007/s11274-011-0853-9.
11 Clarholm, M. 1985. Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants, pp. 255-265. In A. H. Fitter (ed.). Ecological Interactions in Soil. Special publication No. 4. British Ecological Society, Blackwell Oxford, UK.
12 Cocolin, L., M. Manzano, M. Cantoni, and G. Comi. 2001. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl. Environ. Microbiol. 67: 5113-5121.   DOI   ScienceOn
13 Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, et al. 2005. The Ribosomal Database Project (RDPII): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-D296.
14 Daniel, R. 2004. The soil metagenome: A rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204.   DOI   ScienceOn
15 Garrity, G. M., J. A. Bell, and T. Lilburn. 2005. Family II. Oxalobacteraceae fam. nov., p. 623. In D. J. Brenner, N. R. Krieg, J. T. Staley, and G. M. Garrity (eds.). Bergey's Manual of Systematic Bacteriology, 2nd Ed., Vol. 2, The Proteobacteria, Part C. Springer, New York.
16 Embley, T. M. and E. Stackebrandt. 1996. The use of 16S ribosomal RNA sequences in microbial ecology, pp. 39-62. In R.W. Pickup, and J. R. Saunders (eds.). Molecular Approaches to Environmental Microbiology. Horwood, London.
17 Felske, A. and A. D. L. Akkermans. 1998. Spatial homogeneity of the most abundant bacterial 16S rRNA molecules in grassland soils. Microbial Ecol. 36: 31-36.   DOI   ScienceOn
18 Ferrero, M. A., E. Menoyo, M. A. Lugo, M. A. Negritto, M. E. Faríasa, A. M. Antone, and F. Sineriz. 2010. Molecular characterization and in situ detection of bacterial communities associated with rhizosphere soil of high altitude native Poaceae from the Andean Puna region. J. Arid Environ. 74: 1177-1185.   DOI   ScienceOn
19 Glaeser, S. P., P. Kampfer, H. J. Busse, S. Langer, and J. Glaeser. 2009. Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. Int. J. Syst. Evol. Microbiol. 59: 323-330.   DOI   ScienceOn
20 Gomes, N. C. M., O. Fagbola, R. Costa, N. G. Rumjanek, A. Buchner, L. Mendona-Hagler, and K. Smalla. 2003. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl. Environ. Microbiol. 69: 3758-3766.   DOI   ScienceOn
21 Gomes, N. C. M., H. Heuer, J. Schonfeld, R. Costa, L. Mendonca-Hagler, and K. Smalla. 2001. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232: 167-180.   DOI   ScienceOn
22 Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Molec. Biol. Rev. 68: 669-685.   DOI   ScienceOn
23 Kent, A. D. and E. W. Triplett. 2002. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu. Rev. Microbiol. 56: 211-236.   DOI   ScienceOn
24 Hao, D. C., G. B. Ge, and L. Yang. 2008. Bacterial diversity of Taxus rhizosphere: Culture-independent and culture-dependent approaches. FEMS Microbiol. Lett. 284: 204-212.   DOI   ScienceOn
25 Hirsch, P. R., T. H. Mauchline, and I. M. Clark. 2010. Cultureindependent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42: 878-887.   DOI   ScienceOn
26 Hugenholtz, P., B. P. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774.
27 Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, G. Renella, and F. Valori. 2007. Microbial diversity and microbial activity in the rhizosphere. Ciencia del Suelo (Argentina) 25: 89-97.
28 Lee, M. S., J. O. Do, M. S. Park, S. Jung, K. H. Lee, K. S. Bae, et al. 2006. Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Antonie Van Leeuwenhoek 90: 19-27.   DOI   ScienceOn
29 Lee, S. H., J. O. Ka, and J. C. Cho. 2008. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol. Lett. 285: 263-269.   DOI   ScienceOn
30 Lynch, J. M. 1990. The Rhizosphere. Wiley Inter Science, Chichester, UK.
31 Marschner, P., G. Neumann, A. Kania, L. Weiskopf, and R. Lieberei. 2002. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246: 167-174.   DOI   ScienceOn
32 Nicol, G. W., L. A. Glover, and J. I. Prosser. 2003. Spatial analysis of archaeal community structure in grassland soil. Appl. Environ. Microbiol. 69: 7420-7429.   DOI   ScienceOn
33 Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323-327.   DOI   ScienceOn
34 Muyzer, G. 1999. DGGE/TGGE, a method for identifying genes from natural communities. Curr. Opin. Microbiol. 2: 317-322   DOI   ScienceOn
35 Navarro-Noya, Y. E., J. Janet Jan-Roblero, M. C. Gonzalez-Chavez, R. Hernandez-Gama, and C. Cesar Hernandez-Rodriguez. 2010. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Antonie Van Leeuwenhoek 97: 335-349.   DOI   ScienceOn
36 O'Sullivan, L. A., K. E. Fuller, E. M. Thomas, C. M. Turley, J. C. Fry, and A. J. Weightman. 2004. Distribution and culturability of the uncultivated 'AGG58 cluster' of the Bacteroidetes phylum in aquatic environments. FEMS Microbiol. Ecol. 47: 359-370.   DOI   ScienceOn
37 Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 730-740.
38 Pandey, D. K., L. M. S. Palni, and S. C. Joshi. 2003. Growth, reproduction, and photosynthesis of ragweed parthenium (Parthenium hysterophorus). Weed Sci. 51: 191-201.   DOI   ScienceOn
39 Penn, K., D. Wu, J. A. Eisen, and N. Ward. 2006. Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl. Environ. Microbiol. 72: 1680-1683.   DOI   ScienceOn
40 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
41 Sambrook, J. and D. W. Russel. 2000. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
42 Singh, B. K., P. Millard, A. S. Whiteley, and J. C. Murrell. 2004. Unraveling rhizosphere-microbial interactions: Opportunities and limitations. Trends Microbiol. 12: 386-393.   DOI   ScienceOn
43 Skinner, F. A., P. C. T. Jones, and J. E. Mollison. 1952. A comparison of direct- and a plate count technique for quantitative estimation of soil microorganisms. J. Gen. Microbiol. 6: 261-271.   DOI   ScienceOn
44 Suzuki, T., M. S. Rappe, and S. J. Giovannoni. 1998. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl. Environ. Microbiol. 64: 4522-4529.
45 Tamura, K., J. Dudley, M. Nei, and K. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
46 Towers, G. H. N., J. C. Mitchell, E. Rodriguez, F. D. Bennett, and P. V. Subbarao. 1977. Biology and chemistry of Parthenium hysterophorus L., a problem weed in India. J. Sci. Ind. Res. 36: 672-684.
47 Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74.   DOI   ScienceOn
48 Weaver, R. W., S. Angle, P. Bottomley, D. Bezdick, S. Smith, A. Tabatabai, and A. Wollum. 1994. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. Soil Science Society of America, Madison, Wisconsin, USA.
49 Zhang, H., Y. Sekiguch, S. Hanada, P. Hugenholtz, H. Kim, Y. Kamagata, and K. Nakamura. 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphateaccumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microbiol. 53: 1155-1163   DOI   ScienceOn
50 Yoon, J. H., S. J. Kang, W. T. Im, S. T. Lee, and T. K. Oh. 2008. Chelatococcus daeguensis sp. nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int. J. Syst. Evol. Microbiol. 58: 2224-2228.   DOI   ScienceOn
51 Zhou, J., B. Xia, D. S. Treves, L. Y. Wu, T. L. Marsh, R. V. O'Neill, et al. 2002. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68: 326-334.   DOI   ScienceOn