• Title/Summary/Keyword: bacterial community composition

Search Result 135, Processing Time 0.022 seconds

Comparative Analysis of Endophytic Bacterial Communities in the Roots of Rice Grown under Long-term Fertilization Practice using Pyrosequencing Method (파이로시퀀싱을 이용한 비료 장기 연용지의 벼 뿌리 내생세균의 군집 분석)

  • Kim, Byung-Yong;Ahn, Jae-Hyung;Song, Jaekyeong;Kim, Myung-Sook;Weon, Hang-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1100-1107
    • /
    • 2012
  • Bacterial endophytes may be important factors in plant growth and ecologically relevant functions in rice. Using pyrosequencing technology, we analyzed the composition of endophytic bacterial communities that colonized the roots of rice cultivated in long-term fertilized (APK) and non-fertilized (NF) paddy soils. A total of 1,900 reads were obtained from 2 samples. All sequences were classified into 177 OTUs (APK sample) or 72 OTUs (NF sample) at a 97% similarity cut-off. Twenty-two OTUs were shared between the 2 samples, and these were also the most dominant OTUs in both samples. Proteobacteria was the most dominant phylum with 90.2%, followed by Actinobacteria (7.1%) and Bacteroidetes (1.1%). Furthermore, Pseudomonas was the most abundant genus in both samples. We observed clear differences in the structure of the endophytic bacterial community structure between the 2 samples. Notably, the distributions of Alphaproteobacteria and Gammaproteobacteria were markedly different. The diversity index of the APK sample was higher than that of the NF sample. These findings showed that the endophytic bacterial community of rice roots was affected by the presence of fertilizers in the rice field soil.

Effects of transgenic watermelon with CGMMV resistance on the diversity of soil microbial communities using PLFA

  • Yi, Hoon-Bok;Kim, Chang-Gi
    • Animal cells and systems
    • /
    • v.14 no.3
    • /
    • pp.225-236
    • /
    • 2010
  • We compared the composition of phospholipid fatty acids (PLFA) to assess the microbial community structure in the soil and rhizosphere community of non-transgenic watermelons and transgenic watermelons in Miryang farmlands in Korea during the spring and summer of 2005. The PLFA data were seasonally examined for the number of PLFA to determine whether there is any difference in the microbial community in soils from two types of watermelons, non-transgenic and transgenic. We identified 78 PLFAs from the rhizosphere samples of the two types of watermelons. We found eight different PLFAs for the type of plants and sixteen PLFAs for the interaction of plant type and season. The PLFA data were analyzed by analysis of variance separated by plant type (P<0.0085), season (P<0.0154), and the plant type${\times}$season interaction (P<0.1595). Non-parametric multidimensional scaling (NMS showed a small apparent difference but multi-response permutation procedures (MRPP) confirmed that there was no difference in microbial community structure for soils of both plant types. Conclusively, there was no significant adverse effect of transgenic watermelon on bacterial and fungal relative abundance as measured by PLFA. We could reject our hypothesis that there might be an adverse effect from transgenic watermelon with our statistical results. Therefore, we can suggest the use of this PLFA methodology to examine the adverse effects of transgenic plants on the soil microbial community.

Bacterial diversity and its relationship to growth performance of broilers

  • Bae, Yeonji;Koo, Bonsang;Lee, Seungbaek;Mo, Jongsuk;Oh, Kwanghyun;Mo, In Pil
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.3
    • /
    • pp.159-167
    • /
    • 2017
  • The microbial community is known to have a key role during the rearing period of broilers. In this study, gut microbial composition and diversity were examined to evaluate the relationships between these factors and broiler growth performance. By applying 454-pyrosequencing of the V1-V3 regions of bacterial 16S rRNA genes, six fecal samples from four- and 28-day-old chickens from three broiler farms and 24 intestinal samples of broilers with heavy and light body weights were analyzed. Microbial composition assessment revealed Firmicutes to be the most prevalent phylum at farm A, while Proteobacteria were predominant at farms B and C. Fecal microbial richness and diversity indices gradually increased from four to 28 days at all three farms. Microbial diversity assessment revealed that small intestine microbial diversity was lower in heavy birds than in light birds. In light birds, the Firmicutes proportion was lower than that in heavy birds. In conclusion, each broiler farm revealed a specific microbial profile which varied with the age of the birds. The microbial communities appeared to affect growth performance; therefore, gut microbial profiles can be utilized to monitor growth performance at broiler farms.

Two-year field monitoring shows little evidence that transgenic potato containing ABF3 significantly alters its rhizosphere microbial community structure

  • Nam, Ki Jung;Kim, Hyo-Jeong;Nam, Kyong-Hee;Pack, In Soon;Kim, Soo Young;Kim, Chang-Gi
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • Background: Plants over-expressing Arabidopsis ABF3 (abscisic acid-responsive element-binding factor 3) have enhanced tolerance to various environmental stresses, especially drought. Using terminal restriction fragment length polymorphism (T-RFLP) analysis, we compared the rhizosphere-associated structures of microbial communities for transgenic potato containing this gene and conventional "Jopoong" plants. Results: During a 2-year field experiment, fungal richness, evenness, and diversity varied by year, increasing in 2010 when a moderate water deficit occurred. By contrast, the bacterial richness decreased in 2010 while evenness and diversity were similar in both years. No significant difference was observed in any indices for either sampling time or plant line. Although the composition of the microbial communities (defined as T-RF profiles) changed according to year and sampling time, differences were not significant between the transgenic and control plants. Conclusions: The results in this study suggest that the insertion of ABF3 into potato has no detectable (by current T-RFLP technique) effects on rhizosphere communities, and that any possible influences, if any, can be masked by seasonal or yearly variations.

Effect of feeding raw potato starch on the composition dynamics of the piglet intestinal microbiome

  • Yi, Seung-Won;Lee, Han Gyu;So, Kyoung-Min;Kim, Eunju;Jung, Young-Hun;Kim, Minji;Jeong, Jin Young;Kim, Ki Hyun;Oem, Jae-Ku;Hur, Tai-Young;Oh, Sang-Ik
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1698-1710
    • /
    • 2022
  • Objective: Raw potato starch (RPS) is resistant to digestion, escapes absorption, and is metabolized by intestinal microflora in the large intestine and acts as their energy source. In this study, we compared the effect of different concentrations of RPS on the intestinal bacterial community of weaned piglets. Methods: Male weaned piglets (25-days-old, 7.03±0.49 kg) were either fed a corn/soybean-based control diet (CON, n = 6) or two treatment diets supplemented with 5% RPS (RPS5, n = 4) or 10% RPS (RPS10, n = 4) for 20 days and their fecal samples were collected. The day 0 and 20 samples were analyzed using a 16S rRNA gene sequencing technology, followed by total genomic DNA extraction, library construction, and high-throughput sequencing. After statistical analysis, five phyla and 45 genera accounting for over 0.5% of the reads in any of the three groups were further analyzed. Furthermore, short-chain fatty acids (SCFAs) in the day 20 fecal samples were analyzed using gas chromatography. Results: Significant changes were not observed in the bacterial composition at the phylum level even after 20 d post feeding (dpf); however, the abundance of Intestinimonas and Barnesiella decreased in both RPS treatment groups compared to the CON group. Consumption of 5% RPS increased the abundance of Roseburia (p<0.05) and decreased the abundance of Clostridium (p<0.01) and Mediterraneibacter (p< 0.05). In contrast, consumption of 10% RPS increased the abundance of Olsenella (p<0.05) and decreased the abundance of Campylobacter (p<0.05), Kineothrix (p<0.05), Paraprevotella (p<0.05), and Vallitalea (p<0.05). Additionally, acetate (p<0.01), butyrate (p<0.05), valerate (p = 0.01), and total SCFAs (p = 0.01) were upregulated in the RPS5 treatment group Conclusion: Feeding 5% RPS altered bacterial community composition and promoted gut health in weaned piglets. Thus, resistant starch as a feed additive may prevent diarrhea in piglets during weaning.

Comparison of Culture-dependent and DGGE based Method for the Analysis of Marine Bacterial Community (배양법과 DGGE에 의한 해양세균 군집의 비교분석)

  • Kim, Mal-Nam;Bang, Hyo-Joo
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.307-313
    • /
    • 2006
  • Seasonal variation of marine bacterial community was analyzed in the surface sea water collected from one of the stations locating at Tongyeoung coastal area, Korea. The results obtained by the culture method through identification with the VITEK Microbe ID system after pure culture in the selective medium were compared with those obtained by the DGGE based 16S rRNA PCR method. The composition of the marine bacterial community in the sea water samples harvested in September, 2004, November, 2004, January, 2005, May, 2005 and August, 2005 determined by the culture method showed 5, 5, 4, 6, and 10 strains respectively. Pseudomonas fluorescens and Acinetobacter lwoffii were detected in all seasons. The other strains were identified to be Pseudomonas stutzeri, Sphingomonas paucimobilis, Burkholderia mallei and Chryseobacterium indologenes. In contrast, the 16S rRNA PCR-DGGE method detected 10, 11, 6, 9 and 13 populations respectively in the same sea water samples and the strains were identified to be Acinetobacter lwoffii, Burkholderia mallei, Pseudomonas fluoresence, Actinobacillus ureae, Burkholderia sp., Pseudomonas stutzeri, Roseobacter sp., Vibrio parahaemolyticue, Sphingomonas paucimobilis and Rugeria algocolus. This results indicated that the DGGE based 16S rRNA PCR method was more efficient than the culture method for the grasp of the characteristics of the marine bacterial community.

Effect of Casing Layer on Growth Promotion of the Edible Mushroom Pleurotus ostreatus

  • Cho, Young-Sub;Weon, Hang-Yeon;Joh, Jung-Ho;Lim, Jong-Hyun;Kim, Kyung-Yun;Son, Eun-Suk;Lee, Chang-Soo;Cho, Bong-Gum
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • Various bacteria were isolated from the casing layer soil of the culture bed of P. ostreatus and their role in fruiting body induction of the edible mushroom, P. ostreatus, was investigated. Analysis of the bacterial community isolated from the casing layer soil revealed that the composition of genera and number of cultivable bacteria were different for each sterilizing treatment. Bordetella was predominant in the bulk soil whereas Flavobacterium was predominant after sterilization of the casing layer soil. Fluorescent Pseudomonas was predominant in the non-sterilized casing layer soil. Total number of the bacterial genera in the casing layer soil was higher than that in the bulk soil. In particular, an increase in the fluorescent Pseudomonas population was observed in the non-sterilized casing layer accompanied by induction of fruiting body and enhanced mushroom production yield. The results suggested that specific bacterial populations in the casing layer play an important role in the formation of primodia and the development of basidiome in P. ostreatus.

Soil Bacterial Community in Red Pine Forest of Mt. Janggunbong, Bonghwa-Gun, Gyeongbuk, Korea, Using Next Generation Sequencing (차세대염기서열방법을 이용한 경북 봉화군 장군봉 소나무림의 토양 박테리아 군집 구성)

  • Lee, Byeong-Ju;Eo, Soo Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The soil microbiome plays important roles in material cycling and plant growth in forest ecosystem. Although a lot of researches on forest soil fungi in Korea have been performed, the studies on forest soil bacterial communities have been limited. In this study, we conducted next generation sequencing (NGS) targeting 16S rRNA gene to investigate the soil bacterial communities from natural red pine (Pinus densiflora) forest in Mt. Janggunbong, Bonghwa-gun, Gyeongbuk, Korea. Our results showed that the entire bacterial communities in the study sites include the phyla Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, which have been typically observed in forest soils. The composition ratio of Proteobacteria was the highest in the soil bacteria community. The results reflect that Proteobacteria is copiotroph, which generally favors relatively nutrient-rich conditions with abundant organic matter. Some rhizobia species such as Burkholderia, Bradyrhizobium, Rhizobium, which are known to contribute to soil nitrogen-fixation, exist in the study sites. As a result of correlation analysis between soil physicochemical characteristics and bacteria communities, the soil pH was significantly correlated with the soil bacteria compositions.

Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing

  • Pajarillo, Edward Alain B.;Chae, Jong Pyo;Balolong, Marilen P.;Kim, Hyeun Bum;Seo, Kang-Seok;Kang, Dae-Kyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.584-591
    • /
    • 2015
  • This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1-V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level). Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs.

Responses of Soil Bacterial and Fungal Communities to Organic and Conventional Farming Systems in East China

  • Zhang, Hanlin;Zheng, Xianqing;Bai, Naling;Li, Shuangxi;Zhang, Juanqin;Lv, Weiguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.441-453
    • /
    • 2019
  • Organic farming is considered an effective form of sustainable agricultural management. However, understanding of soil microbial diversity and composition under long-term organic and conventional farming is still limited and controversial. In this study, the Illumina MiSeq platform was applied to investigate the responses of soil bacterial and fungal diversity and compositions to organic farming (OF) and improved conventional farming (CF, applied straw retention) in the rice-wheat rotation system. The results highlighted that the alpha diversity of microbial communities did not differ significantly, except for higher bacterial diversity under OF. However, there were significant differences in the compositions of the soil bacterial and fungal communities between organic and conventional farming. Under our experimental conditions, through the ecological functional analysis of significant different or unique bacterial and fungal taxonomic members at the phyla and genus level, OF enhanced nitrogen, sulfur, phosphorus and carbon dynamic cycling in soil with the presence of Nodosilinea, Nitrospira, LCP-6, HB118, Lyngbya, GOUTA19, Mesorhizobium, Sandaracinobacter, Syntrophobacter and Sphingosinicella, and has the potential to strengthen soil metabolic ability with Novosphingobium. On the other hand, CF increased the intensity of nitrogen cycling with Ardenscatena, KD1-23, Iamia, Nitrosovibrio and Devosia, but enriched several pathogen fungal members, including Coniochaeta, Corallomycetella, Cyclaneusma, Cystostereum, Fistulina, Curvularia and Dissoconium.