• Title/Summary/Keyword: bacterial adhesion

Search Result 131, Processing Time 0.026 seconds

Antibacterial Activity of Curcuma longa against Methicillin-resistant Staphylococcus aureus

  • You Yong Ouk;Yu Hyeon Hee;Jeon Byung Hun;Jeong Seung Il;Cha Jung Dan;Kim Shin Moo;Kim Kang Ju
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.574-579
    • /
    • 2003
  • Methicillin-resistant Staphylococcus aureus (MRSA) has been emerging worldwide as one of the most important hospital and community pathogens. Therefore, new agents are needed to treat the MRSA. In the present study, we investigated antimicrobial activity of ethyl acetate, methanol, and water extracts of Curcuma longa L. (C. longa) aganist clinical isolates of MRSA. The ethyl acetate extract of C. long a demonstrated a higher antibacterial activity than the methanol extract or water extract. Since the ethyl acetate extract was more active than other extracts, we examined whether ethyl acetate extract may restore the antibacterial activity of β-lactams and alter the adhesion and invasion of MRSA to human mucosal fibroblasts (HMFs). In the checkerboard test, ethyl acetate extract of C. longa markedly lowered the MICs of ampicillin and oxacillin against MRSA. In the bacterial adhesion and invasion assay, MRSA intracellular invasion were notably decreased in the presence of 0.125 - 2 mg/ml of C. longa extract compared to the control group. These results suggest that ethyl acetate extract of C. longa may have antibacterial activity and the potential to restore the effectiveness of β-lactams against MRSA, and inhibit the MRSA adhesion and invasion to HMFs.

Quantitative analysis of mutans streptococci adhesion to various orthodontic bracket materials in vivo (다양한 교정용 브라켓 원재료에 부착하는 mutans streptococci 양의 비교분석)

  • Yu, Jin-Kyoung;Ahn, Sug-Joon;Lee, Shin-Jae;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.105-111
    • /
    • 2009
  • Objective: To estimate the effects of bracket material type on enamel decalcification during orthodontic treatment, this study analyzed the adhesion level of mutans streptococci (MS) to orthodontic bracket materials in vivo. Methods: Three different types of orthodontic bracket materials were used: stainless steel, monocrystalline sapphire, and polycrystalline alumina. A balanced complete block design was used to exclude the effect of positional variation of bracket materials in the oral cavity. Three types of plastic individual trays were made and one subject placed the tray in the mouth for 12 hours. Then, the attached bacteria were isolated and incubated on a mitis salivarius media containing bacitracin for 48 hours. Finally, the number of colony forming units of MS was counted. The experiments were independently performed 5 times with each of the 3 trays, resulting in a total of 15 times. Mixed model ANOVA was used to compare the adhesion amount of MS. Results: There was no difference in colony forming units among the bracket materials irrespective of jaw and tooth position. Conclusions: This study suggested that the result of quantitative analysis of MS adhesion to various orthodontic bracket materials in vivo may differ from that of the condition in vitro.

Fluorescent detection of bacteria associated with gingival sulcus epithelium (DNA 형광 염색을 이용한 치은열구상피부착 세균에 관한 연구)

  • Shin, Seung-Yun;Lee, Sang-Hyun;Yang, Seung-Min;Kye, Seung-Beom
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.639-644
    • /
    • 2008
  • Purpose: The aim of this study was to compare the number of live and dead bacteria attached to, or within, the stratified squamous epithelium lining the tissue side of the gingival sulcus. Materials and Methods: A total of 50 patients was examined and classified into healthy or diseased sites according to inflammatory status of the gingival tissue. The surface of stratified squamous epithelium was removed by gentle scraping of the gingival sulcus with curettes. The cells were processed in the laboratory by density-gradient centrifugation to separate the epithelial cells from the loose bacteria and debris. The LIVE/$DEAD^{(R)}$ $BacLight^{TM}$ Bacterial Viability Kit was applied and the specimens were observed by an epifluorescent microscope and the number of bacteria was counted. Results: Live and dead bacteria were stained to green and red, irrespectively. Generally, the number of total bacteria in the diseased sites was significantly higher than in the healthy sites. The mean number of detected bacteria in the diseased sites was $58.6{\pm}36.0$ (red bacteria $10.4{\pm}9.2$ / green bacteria $48.2{\pm}30.5$), while it was $1.5{\pm}1.7$ in the healthy sites (red bacteria $0.1{\pm}0.3$ / green bacteria $1.4{\pm}1.5$). The percentage of red bacteria was $17.5{\pm}11.2%$ in the diseased sites and $2.0{\pm}5.8%$ in the healthy sites. Conclusion: The total number of bacteria in the diseased sites was significantly higher than that of the healthy sites. The ratio and the number of red bacteria were also significantly higher in the diseased sites.

EFFECT OF ROASTED BARLEY TEA ON THE ADHESIVE PROPERTIES ON SALIVA-COATED HYDROXYAPATITE BEADS OF CARIOGENIC MUTANS STREPTOCOCCI (보리차(Hordeum vulgare var, hexastichon)가 수산화인회석에 대한 우식유발성 세균의 부착에 미치는 영향)

  • Kim, Young-Jae;Kim, Chong-Chul;Kim, Kack-Kyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.618-624
    • /
    • 2002
  • Effect of the roasted barley tea in commercial markets on the adherence to the saliva-coated hydroxyapatite(HA) beads and the cell surface hydrophobicity of Streptococcus mutans and Streptococcus sobrinus as cariogenic microorganism was examined in vitro. Adherence activity and hydrophobicity in bacteria tested in all the barley tea samples decreased and the values were different according to the type of tea and the type of treatment. The inhibition of bacterial adsorption to HA beads suggest that barley tea active molecules as catechins and melanoidins may adsorb to a host surface, preventing the tooth receptor from interacting with any bacterial adhesions. The obtained results showed that the barley tea may inhibit bacterial adherence, the first step of the pathogenesis of dental caries in which these microorganism are involved.

  • PDF

Molecular Characterization of Regulatory Genes Associated with Biofilm Variation in a Staphylococcus aureus Strain

  • Kim, Jong-Hyun;Kim, Cheorl-Ho;Hacker, Jorg;Ziebuhr, Wilma;Lee, Bok-Kwon;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • Biofilm formation in association with the intercellular adhesion (icaADBC) gene cluster is a serious problem in nosocomial infections of Staphylococcus aureus. In all 112 S. aureus strains tested, the ica genes were present, and none of these strains formed biofilms. The biofilm formation is known to be changeable by environmental factors. We have found about 30% of phase variation in these strains with treatment of tetracycline, pristinamycin, and natrium chloride. However, this phenotype disappeared without these substances. Therefore, we have constructed stable biofilm-producing variants through a passage culture method. To explain the mechanism of this variation, nucleotide changes of ica genes were tested in strain S. aureus 483 and the biofilm-producing variants. No differences of DNA sequence in ica genes were found between the strains. Additionally, molecular analysis of three regulatory genes, the accessory gene regulator (agr) and the staphylococcal accessory regulator (sarA), and in addition, alternative transcription factor ${\sigma}^B$ (sigB), was performed. The data of Northern blot and complementation showed that SigB plays an important role for this biofilm variation in S. aureus 483 and the biofilm-producing variants. Sequence analysis of the sigB operon indicated three point mutations in the rsbU gene, especially in the stop codon, and two point mutations in the rsbW gene. This study shows that this variation of biofilm formation in S. aureus is deduced by the role of sigB, not agr and sarA.

The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

  • Lee, So-Hyoun;Lim, Youn-Mook;Jeong, Sung In;An, Sung-Jun;Kang, Seong-Soo;Jeong, Chang-Mo;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.484-495
    • /
    • 2015
  • PURPOSE. This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS. BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (${\alpha}<.05$). RESULTS. BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION. BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane.

Degradation Characteristics of Wood Cellulose by Ruminal Cellulolytic Anaerobic Bacterium Ruminococcus albus F-40 (혐기성 세균 Ruminococcus albus F-40에 의한 목재 cellulose의 분해특성)

  • Kim, Yoon-Soo;Wi, Seung-Gon;Myung, Kyu-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.83-95
    • /
    • 1997
  • The degradation mode of lignocellulose by anaerobic ruminal cellulolytic bacterium Ruminococcus albus F-40 was investigated. Birchwood holocellulose and filter paper were incubated as the sole carbohydrate sources with using the Hungate techniques. After 2 or 4 days of incubation, samples were employed for chemical and electron microscopic evaluations. The degradation rate of cellulosic substrates and the adhesion rate of bacteria to the substrates increased proportionally with the decrease of relative crystallinity of cellulose, indicating the preferential breakdown of amorphous cellulose, by this bacterium. X-ray diffraction analyses and polarized light microscopy showed, however, that crystalline cellulose was also degraded by R. albus. FT-IR spectra indicated that not only cellulose but hemicellulose was also degraded by this bacterium. Electron microscopic investigations showed the protuberant structures on the surface of R. albus. These structures were much more significant when bacterial cells were grown in the media containing insoluble substrates, such as cellulose, indicating clearly that bacterial protuberant structures were induced by the substrates. Protuberant structures extended from the bacterial cells adhered tightly to the substrates and numerous vesicles covered the surface of cellulosic substrates affected. Cellulosome-like structures were distributed on the cellulose matrix. Electron microscopic works showed that diverse surface organells of R. albus were involved in the degradation of cellulosic materials. SEM examinations showed the breakdown of cellulose by R. albus was proceeded by severeal routes : short fiber formation, defibrillation and destrafication of cellulose microfibril.

  • PDF

Detection of viability Change of Escherichia coli O157:H7 using Surface Plasmon Resonance

  • Park, Gwang-Won;Lee, U-Chang;Lee, Won-Hong;Choe, Jeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.635-638
    • /
    • 2003
  • For the acute assessment on biological toxicity of wastewater, surface plasmon resonance(SPR) based cell viability detection was performed using gold surface-confined cell as a result of adhesion-modifying chemicals. Escherichia coli O157:H7 (E. coli O157:H7) was investigated after exposure to EDTA. Cells were immobilized on gold coated slide glass for SPR analysis by the method of cross-linking carboxyl group on the bacterial surface with amine group of poly-L-lysine that had been coupled to the gold surface modified by a self-assembled monolayer of 11-mercaptounde canoic acid (11-(MUA)). Reflective intensity of each flow step was changed with respect to confect of ethylenediaminetetraacetic acid (EDTA) disodium salt and phosphate-buffered saline (PBS) solution. The proposed detection technique can be used for biological toxicity test.

  • PDF

Role of Exopolymeric Substances (EPS) in the Stability of the Biofilm of Thiomonas arsenivorans Grown on a Porous Mineral Support

  • Michel, Caroline;Garrido, Francis;Roche, Emilie;Belval, Sylvain Challan;Dictor, Marie-Christine
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.183-186
    • /
    • 2011
  • Biochemical methods were selected to evaluate the role of exopolymeric substances in the stability of biofilms used in bioremediation processes. Biofilms of Thiomonas arsenivorans formed on pozzolana were thus treated with pronase (protein target), lectins (Con A or PNA), calcofluor or periodic acid (polysaccharides target), DNase (DNA target), and lipase (triglycerides target). Neither protease nor DNase treatments had any effect on bacterial adhesion. Lectins and calcofluor treatments mainly affected young biofilms. Lipase treatment had a noticeable effect on biofilm stability whatever the biofilm age. Results suggest that it would be an increased resistance of mature biofilms that protects them from external attacks.

Effect of NAPL(non-aqueous phase liquid) on enhanced biodegradation of phenanthrene

  • Cho, Joong-Hoon;Raina M. Miller;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.93-96
    • /
    • 1998
  • NAPL이 다핵방향족화합물의 하나인 phenanthrene 의 생분해에 미치는 영향을 알아보았다. Pseudomonas putida CRE7 을 이용한 실험에서 NAPL 의 첨가로 인한 가장 큰 차이는 미생물의 소수성의 변화였다. 소수성이 증대됨으로써 phenanthrene 의 가용성이 증대되었으며, 이로 인해 더 많은 양의 오염물 분해가 이루어졌다. 생물학적 분해의 관찰은 발생되어지는 $^{14}$ $CO_2$의 radioactivity 측정을 통해 이루어졌으며, 미생물의 소수성 측정은 bacterial adhesion to hydrocarbon (BATH) assay 를 이용하였다.

  • PDF