• Title/Summary/Keyword: bacteria strain B-1

Search Result 235, Processing Time 0.032 seconds

Isolation of Bacteria with Protease Activity from Cheonggukjang and Purification of Fibrinolytic Enzyme (청국장으로부터 혈전용해 활성이 우수한 균주 분리 및 혈전용해효소정제)

  • Choi, Yeon Hee;Lee, Jun Seung;Bae, So Young;Yang, Keun Jae;Yeom, Kyu Won;Jo, Dong Hyeok;Kang, Ock Hwa;Baik, Hyung Suk
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.259-266
    • /
    • 2013
  • To isolate the fibrinolytic enzyme, 268 strains from 21 samples were morphologically isolated from Cheonggukjang collected from Korea and Japan. Among the 268 strains, protease-producing bacteria were isolated in nutrient agar medium including 1% skimmed milk. As a result of this, 22 strains were isolated. Apiweb site was used to identify these strains based on their biochemical properties. In addition, 16S rRNA sequencing was performed to identify the strain. Most of the identified strains were Bacillus subtilis and B. amyloliquefaciens. Fibrinolytic enzyme activity was measured with the fibrin plate method. Five strains were finally selected: A2-14, A2-20, C1-05, C1-09, and F2-01. Of those five strains, the A2-20 strain, which is close to B. amyloliquefaciens, showed the strongest fibrinolytic activity. The fibrinolytic enzyme produced by the A2-20 strain was partially purified from culture supernatant by gel filtration and ion exchange chromatography. The optimal pH and temperature values of the partially purified enzyme were 7.0 and $35^{\circ}C$, respectively. Purified protein analysis was carried out with SDS-PAGE and zymography. A genetic analysis was also conducted by PCR based on the consensus sequence of fibrinolytic enzyme. Corresponding genes with a partial sequence of the A2-20 strain were identified.

Comparative Analysis of Aniline Dioxygenase Genes from Aniline Degrading Bacteria, Burkholderia sp. HY1 and Delftia sp. HY99. (Aniline 분해균주 Burkholderia sp. HY1과 Delftia sp. HY99에서 유래된 Aniline Dioxygenases 유전자의 비교 분석)

  • Kahng, Hyung-Yeel;Oh, Kye-Heon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.104-111
    • /
    • 2007
  • In this study, aniline dioxygenase genes responsible for initial catabolism of aniline in Burkholderia sp. HY1 and Delftia sp. HY99 were cloned and the amino acid sequences were comparatively analyzed, which already have been reported as bacteria utilizing aniline as a sole source of carbon and nitrogen, B. sp. HY1 was found to have at least a plasmid, and the plasmld-cured strain, B. sp. HY1-PC obtained using mitomycin C was tested with wild type strain to investigate whether the former maintained the degradability for aniline. This proved that the aniline oxygenase gene from B. sp. HY1 was located in chromosomal DNA, not in plasmid DNA. Aniline dioxygenase small subunits from B. sp. HY1 and D. sp. HY99 were found, based on 146 amino acids, to share 79% similarity. Notably, ado2 genes from B. sp. HY1 and D. sp. HY99 which were found to be terminal dioxygenase of aniline dioxygenase small subunit showed 99% similarity in the deduced amino acid sequences with tdnA2 of Frateuria sp. ANA-18 and danA2 of D. sp. AN3, respectively. Besides, enzyme assay and amino acid sequence analysis of catechol dioxygenase supported the previous report that B. sp. HY1 might occupy ortho-cleavage pathway using catechol 1,2-dioxygenase, while D. sp. HY99 might occupy catechol 2,3-dioxygenase for meta-cleavage pathway.

Isolation and characterization of Bacillus amyloliquefaciens TK3 inhibiting causative bacteria of atrophic rhinitis and fowl typhoid (돼지위축성비염과 가금티푸스 병원균을 저해하는 Bacillus amyloliquefaciens TK3의 분리 및 특성 조사)

  • Jung, Taeck-Kyung;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.177-180
    • /
    • 2015
  • For prevention of atrophic rhinitis of swine by Bordetella bronchiseptica and fowl typhoid by Salmonella gallinarum, bacterial strains showing antimicrobial activity against those pathogenic bacteria were isolated from various samples collected at animal farms. Among 372 bacterial isolates strain TK3 showed the highest antibacterial activity against both pathogens, and was identified as Bacillus amyloliquefaciens by 16S rRNA gene sequence analysis. B. amyloliquefaciens TK3 could inhibit growth of both pathogens by secretion of antibacterial compounds such as siderophore, rhamnolipid and antimicrobial peptide. Production radius of siderophore on Chrome azurol S agar plate by strain TK3 was 0.53 cm after 14 days of incubation, and concentration of siderophore in King's B medium was 1.06 mmol/ml. It also secreted 82.4 mg/L of rhamnolipid, and antimicrobial peptide that completely inhibited growth of both pathogens at concentration of $30{\mu}l/ml$ in LB medium.

Suppression of Rhizoctonia spp. by Antagonistic Microorganisms and Their Compatibility with Fungicides (길항미생물에 의한 Rhizoctonia spp.의 억제 및 길항미생물의 농약 혼용시 생존율)

  • 이상재;심경구;김영권;허근영
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • 174 isolates of soil microorganisms were isolated from E-golf club from Apr.1997 through Oct. 1997. And 27 strains of them were selected through the inhihition test of mycelial growth. In the same period, soil-borne diesease pathogens, "Rhizoctonia", causing Large patch, Brown patch, Spring dead spot, and Yellow patch were isolated from the diseased areas in E-golf and S-golf club. The antagonistic activity of the strains against the pathogens was tested to select the excel-lent antagonists. In contact with the fungicides, the survivability of the antagonists was tested to assess the compatibility of the antagonists with the pesticides. The results were as follows: 1.Suppression of Rhizoctonia by Antagonists. Antagonistic activity of 27 strains against the pathogens was: tested in vitro. In the result, 3 isolates(B-7, B-15, B-41) of bacteria and 2 isolates(F-5, F-47) of fungi were superior to the rest. 2.Compatibility of the antagonists: with the fungicides: With 13 kinds of pesticides widely using Golf Club, Compatibility of 5 antagonists: were finally tested to select the strains: that mostly survived in contact with pesticides. In the results:, two of five strains: were selected : one strain was bacteria B-15, the other strain was fungi F-47. 24h after the mixing with pesticides:, these two strains were shown to survive at 90% level and these were identified as Bacillus and Trichoderma, respectively. And the most compatible pesticides: with the antagonists were shown to Polytoxin-D thirarn(s:urvivability 99.4%) and Validamycin-A (survivability 98.6%). Keywords:Antagonist, Large Patch, Trichoderma, Compatibility, Fungicide.Fungicide.

  • PDF

Comparison of Two Feather-Degrading Bacillus Licheniformis Strains

  • Lin, Xiang;Lee, Soo-Won;Bae, Hee Dong;Shelford, Jim A.;Cheng, Kuo-Joan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1769-1774
    • /
    • 2001
  • Bacillus licheniformis strains L-25 and PWD-1 are two thermophilic feather-degrading bacteria. Despite isolated from different environmental conditions, they were both capable of breaking down chicken feathers and growing in a medium in which feather was the only source of carbon and nitrogen. A 1.46-kb keratinase gene (ker B) was isolated from strain L-25 by a polymerase chain reaction (PCR) using L-25 genomic DNA as templates. Sequencing results reveal that ker B shares great sequence identity with a previously published keratinase gene of B. licheniformis PWD-1 (ker A). Only two amino acids differences were found in the deduced amino acid sequence between the keratinases from L-25 and PWD-1. However several nucleotide changes were found upstream of the putative promoter region. Protease inhibition studies indicated that neutral protease activity accounted for approximate 25 to 30% of total extracellular proteolytic activity produced by strain L-25 in the feather medium. In contrast, no measurable neutral protease activity was produced by strain PWD-1 in the feather medium. When glucose (1%), a common catabolic repressor, was added into the feather medium, L-25 was still able to grow and produce keratinase. Strain PWD-1 produced no neutral protease activity and its growth was severely inhibited in the feather medium containing glucose. L-25 produced an enhanced level of keratinase in the feather medium in comparison with PWD-1.

Biological control of Gray Mold Rot of Perilla Caused by Botrytis cinerea II. Formulation of Antagonistic Bacteria and Its Control Effect (들깨 잿빛곰팡이병의 생물학적 방제 II. 미생물농약의 제조 및 그 방제효과)

  • Moon, Byung-Ju;Kim, Choul-Soung;Song, Ju-Hee;Kim, Ju-Hee;Lee, Jae-Pil;Park, Hyean-Cheal;Shin, Dong-Bum
    • Research in Plant Disease
    • /
    • v.8 no.3
    • /
    • pp.184-188
    • /
    • 2002
  • An antagonistic bacteria, Bacillus licheniformis Nl strain which effectively inhibited mycelial growth of gray mold rot pathogen, Botrytis cinerea was isolated from the rhizosphere of perilla crop. Powder soy formulation by B. lichentfomis Nl strain as a biocontrol agent was developed far the first time and estimated its control effect on perilla leaves in this study. First of all, far the mass production of antifungal metabolites of B. lichentfomis Nl strain in flask liquid culture, the most effective carbon and nitrogen source were selected as glucose and tryp-tone, respectively, For the formulation, vegetative biomass of B. licheniformis Nl strain from 5-day-old liquid culture in nutrient broth added glucose and tryptone was mixed with soy flour, rice flour glucose, FeSo$_4$~7$H_2O$, and MnCl$_2$. 4$H_2O$, and dried and pulverized. In plastic house test, powder soy formulation effectually controlled gray mold rot as the control value of 93.1 %, was more effective than chemical fungicide, benomyl showing the control value of 86.1%. Thus, development of powder soy formulation of B. lichentfomis Nl will aid large-scale application of biological control in field trials.

Growth-inhibiting Effects of Juniperus virginiana Leaf-Extracted Components toward Human Intestinal Bacteria

  • Kim, Moo-Key;Kim, Young-Mi;Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.164-167
    • /
    • 2005
  • The growth responses of materials extracted from Juniperus virginiana leaves against Bifidobacterium bifidum, B. longum, Clostridium perfringens, Escherichia coli, Lactobacillus acidophilus, L. casei, and Streptococcus mutans were examined using impregnated paper disk agar diffusion. The biologically active constituent isolated from the J. virginiana extracts was characterized as ${\alpha}$-cedrene using various spectroscopic analyses including IR, EI-MS, and NMR. The responses varied according to the dose, chemicals, and bacterial strain tested. Methanol extracts of J. virginiana leaves exhibited a strong and moderate inhibitory activity against C. perfringens and E. coli at 5 mg/disk, respectively. However, in tests conducted with B. bifidum, B. longum, L. acidophilus, L. casei, and S. mutans, the methanol extracts showed no or weak inhibitory response. At 2 mg/disk, a-cedrene strongly inhibited the growth of C. perfringens and moderately inhibited the growth of E. coli and S. mutans, without any adverse effects on the growth of four lactic acid-bacteria. Of the commercially available compounds originating from J. virginiana leaves, cedrol and ${\alpha}$-pinene exhibited strong and moderate growth inhibition against C. perfringens, and ${\alpha}$-copaene revealed moderate growth inhibition against E. coli at 1 mg/disk. Furthermore, cedrol exhibited moderate and weak growth inhibition against S. mutans at 2 and 1 mg/disk, respectively. However, little or no activity was observed for camphene, (+)-2-carene, p-cymene, limonene, linalool, and a-phellandrene against B. bifidum, B. longum, C. perfringens, L. acidophilus, L. casei, and S. mutans at 2 mg/disk. The observed inhibitory activity of the J. virginiana leaf-extracted materials against C. perfringens, E. coli, and S. mutans may be an indication of at least one of the pharmacological actions of the J. virginiana leaf.

Screening for In Vitro Antifungal Activity of Soil Bacteria Against Plant Pathogens

  • Chang, Sung-Hwan;Lee, Jung-Yeop;Kim, Ki-Deok;Hwang, Byung-Kook
    • Mycobiology
    • /
    • v.28 no.4
    • /
    • pp.190-192
    • /
    • 2000
  • Antifungal bacteria for biological control of plant diseases or production of novel antibiotics to plant pathogens were isolated in 1997 from various soils of Ansung, Chunan, Koyang, and Paju in Korea. Sixty-four bacterial strains pre-screened from approximately 1,400 strains were tested on V-8 juice agar against eight plant pathogenic fungi using in vitro bioassay technique for inhibition of mycelial growth. Test pathogens were Alternaria mali, Colletotrichum gloeosporioides, C. orbiculare, Fusarium oxysporum f. sp. cucumerinum, F. oxysporum f. sp. lycopersici, Magnaporthe grisea, Phytophthora capsici, and Rhizoctonia solani. A wide range of antifungal activity of bacterial strains was found against the pathogenic fungi, and strain RC-B77 showed the best antifungal activity. Correlation analysis between inhibition of each fungus and mean inhibition of all eight fungi by 64 bacterial strains revealed that C. gloeosporioides would be best appropriate for detecting bacterial strains producing antibiotics with potential as biocontrol agents for plant pathogens.

  • PDF

Safety and Immunogenicity of Salmonella enterica Serovar Typhimurium llaB in Mice

  • CHO SUN-A;LEE IN-SOO;PARK JONG-HWAN;SEOK SEUNG-HYEOK;LEE HUI-YOUNG;KIM DONG-JAE;BACK MIN-WON;LEE SEOK-HO;HUR SOOK-JIN;BAN SANG-JA;LEE YOO-KYOUNG;PARK JAE-HAK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.609-615
    • /
    • 2005
  • The safety and immunogenicity of an attenuated recombinant Salmonella vaccine strain, Salmonella enterica serovar Typhimurium llaB, was assessed. This vaccine strain could survive in low pH condition, and its ability of intracellular survival did not differ from that of S. enterica serovar Typhimurium UK1, which is the wild-type of the vaccine strain. The mortality of the mice orally administered with the vaccine strain was $50\%$ at the dose of $10^7$ CFU. All mice administered with $10^5\;or\;10^3$ CFU of the vaccine strain survived for 3 days postinoculation (pi). However, all mice administered with more than $10^3$ CFU of the vaccine strain died within 3 days pi. To examine the protective effect of the vaccine strain, mice were orally immunized with $10^4\;and\;10^6$ CFU of the bacteria. Control mice were given with 0.5 ml of phosphate buffered saline (PBS). After 8 days, the mice were challenged with $10^9$ CFU of S. enterica serovar Typhimurium UK1, and mortality was examined for 5 days. The survival rates of the mice immunized with $10^4\;and\;10^6$ CFU of the vaccine strain were $60\%\;and\;80\%$, respectively, whereas all control mice died within 2 days after challenging. To investigate the immunogenicity of S. enterica serovar Typhimurium llaB, mice were orally immunized with $10^5\;or\;10^6$ CFU ml of the vaccine strain. Five mice of each group were sacrificed at 5 and 12 days after immunization, and results showed that immunization of the vaccine strain led to increases of IgG1, IgG2, and IgM titers against S. enterica serovar Typhimurium UK1 in mouse sera, cytokine expressions such as IL-2, IL-4, IL-6, and IL-10 in spleen, and the lymphocyte proliferation response to mitogens (concanavalin A or LPS) stimulation.

Characterization and Purification of Acidocin 1B, a Bacteriocin Produced by Lactobacillus acidophilus GP1B

  • Han, Kyoung-Sik;Kim, Young-Hoon;Kim, Sae-Hun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.774-783
    • /
    • 2007
  • In the present study, acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP 1B, exhibited profound inhibitory activity against a variety of LAB and pathogens, including Gram-negative bacteria, and its mode of action was to destabilize the cell wall, thereby resulting in bactericidal lysis. Acidocin 1B was found to be heat stable, because it lost no activity when it was heated up to $95^{\circ}C$ for 60 min. It retained approximately 67% of the initial activity after storage for 30 days at $4^{\circ}C$, and 50% of its initial activity after 30 days at $25^{\circ}C$ and $37^{\circ}C$. The molecular mass of acidocin 1B was estimated to be 4,214.65 Da by mass spectrometry. Plasmid curing results indicated that a plasmid, designated as pLA1B, seemed to be responsible for both acidocin 1B production and host immunity, and that the pLA1B could be transformed into competent cells of L. acidophilus ATCC 43121 by electroporation. Our findings indicate that the acidocin 1B and its producer strain may have potential value as a biopreservative in food systems.