• Title/Summary/Keyword: backwash water

Search Result 67, Processing Time 0.021 seconds

The Effects of Anthracite Media Sphericity on Filtration Efficiency (안쓰라사이트 여재 원형도가 여과 효율에 미치는 영향)

  • Cheong, Won-suk;Choi, Suing-il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.763-770
    • /
    • 2007
  • There are many design parameters affecting filtration efficiency such as filteration rate, media packing depth, size distribution, and so on. The sphericity, the ratio of the surface area of an equal volume sphere to the real surface area of the particles, is one of major physical characters of media. The effect of sphericity on the performance of anthracite filter has been investigated. Media from eight water treatment plants have been collected. The sphericity of each media has been calculated by using well known headloss equations such as Kozeny equation, Dahmarajah equation etc.. Columns packed with anthracite media having different sphericity have been used to compare headloss development, floc accumulation in the bed, particles in bed water, filtrate turbidities after backwash and so on. The repeated experiments have indicated that the sphericity of anthracite media may not have remarkable influence on the filter performance as it has been suspected. It also has been prospected in the experiment that the media of higher sphericity would store more particles in the bed and give better filtrate quality, if provided that the effective size and the size distribution of media would be the same.

The Feasibility Study of CMP Wastewater Treatment Using Tubular Membrane and Coagulants (응집제와 관형막을 활용한 CMP 폐수 처리 가능성 연구)

  • Jung, Ho Chan;Jung, Cheol Joong;Song, Ja Yeon;Kim, Youn Kook;Lee, Sun Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.639-645
    • /
    • 2012
  • The purpose of this study is to identify the possibility of the CMP wastewater treatment from semiconductor fabrication under operating tubular membrane with coagulants. To find suitable coagulants treating CMP wastewater, we conducted Jar-test. After Jar-test experiments suitable coagulants are PAC(17%), $Ca(OH)_2$ and optimum coagulant dosage is PAC(17%) 10mg/L, $Ca(OH)_2$ 110 ~ 120mg/L. Based on these results, the tubular membrane was applied to CMP wastewater, the turbidity removal efficiency is $Ca(OH)_2$ > PAC(17%) > Nothing. The fast cross-flow velocity and backwash process what are operating characteristics of tubular membrane can be stable CMP wastewater treatment. But when the coagulant and tubular membrane are used at the same time, the withdraw and treatment of the CMP wastewater are possibile. However further treatment process needs if treated water will be used for semiconductor fabrications.

A Study on Operating Condition of Test-Bed Plant using Membrane filtration of D Water Treatment Plant in Gwang-Ju (D정수장 정밀여과막 실증플랜트의 최적 운전조건 연구)

  • Yang, Hyung-Jae;Yi, Seung-Hoon;Moon, Kyung-Ran
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.155-163
    • /
    • 2017
  • Membrane filtration has become more popular in drinking water treatment recently, since the filtration can control not only particulate matters but also pathogenic microorganisms such as giardia and cryptosporidium very effectively. Pilot-scale ($120m^3/d$ of treatment capacity) and test-bed ($25,000m^3/d$ of treatment capacity) microfiltration experiments were conducted to find optimum operating mode and the critical flux. Optimum operating mode of pilot-test was assessed as inflow 1.0 min, filtration 36.5 min, air backwash 0.9 min, backwash 1.0 min and outflow 1.0 min with 50 LMH ($L/min{\cdot}m3^$) of critical flux. Critical Flux was calculated to be $50L/m^2-h$ (within TMP 0.5 bar) based on the increase formula of the transmembrane pressure difference according to the change of time at Flux 20, 40, 56 and 62 LMH in pilot operation. Chemical cleaning was first acid washed twice, and alkali washing was performed secondarily, and a recovery rate of 95% was obtained in the test-bed plant. The results of operating under these appropriate conditions are as follows. Turbidity of treated water were 0.028, 0.024, 0.026 and 0.028 NTU in spring, summer, autumn and winter time, respectively. Microfiltration has superior treatment capability and performance characteristics in removing suspended solids and colloidal materials, which are the main cause of turbidity and important carrier of metal elements, and it has shown great potential in being an economically substitute to traditional processes (sand filtration).

Removal Property of Taste and Odor Causing Material in Pulsator Clarifier (맥동식 침전지에서 맛·냄새 유발물질 제거 특성)

  • Jeong, Il Yong;Cha, Min Whan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.104-109
    • /
    • 2011
  • The removal efficiencies of 2-methylisoborneol (MIB) and geosmin were investigated to reveal removal characteristics of typical organic compounds causing disagreeable taste and odor at the conventional water treatment plant installed with pulsator clarifier patented by the French company $Degr{\acute{e}}mont$. The injection rate of Powdered Activated Carbon (PAC) into water was changed step wisely as we conducted jar tests in the laboratory and water treatment in the actual plant. 2-MIB concentration decreased linearly while geosmin did exponentially along with the injection rate of PAC at our jar tests. The removal efficiency of geosmin by PAC injection was considerably higher than that of 2-MIB. In the real pulsator clarifier, 2-MIB concentration started decreasing as the injection rate reached up to 10 mg/L of PAC. On the other hand, the concentration of geosmin in water decreased proportional to the injection rate of PAC. In the sand filtration, removal efficiencies of 2-MIB and geosmin on July were much higher than those on March. It was carefully suggested beforehand and found afterwards that general microorganisms notably existed in the sand filter with no chlorine in filter influent and backwash water and the sand filter biologically activated removed much more odor compounds. It was considered as the reason why the removal efficiency of 2-MIB and geosmin was increased. The microbial activity maybe increased in summer with water temperature rising and low filtration rate possibly increased contact time between odor compounds and general microorganisms.

Inorgainc fouling and it fouling reduction in direct contact membrane distillation process (직접 접촉식 막 증발공정에서 무기 막오염 특성 분석 및 저감방법)

  • Lee, Tae-Min;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • This study was aimed to examine inorganic fouling and fouling reduction method in direct contact membrane distillation(DCMD) process. Synthetic seawater of NaCl solution with CaCO3 and CaSO4 was used for this purpose. It was found in this study that both CaCO3 and CaSO4 precipitates formed at the membrane surface. More fouling was observed with CaSO4(anhydrite) and CaSO4·0.5H2O(bassanite) than CaSO4·2H2O(gypsum). CaCO3 and gypsum were detected at the membrane surface when concentrates of SWRO(seawater reverse osmosis) were treated by the DCMD process, while gypsum was found with MED(multi effect distillation) concentrates. Air backwash(inside to out) was found more effective in fouling reduction than air scouring.

A Study on the Positioning of Ice Sensors for Assessing Airworthiness of Military Helicopter (군용헬기 결빙 감항인증 시험을 위한 결빙센서 위치선정에 관한 연구)

  • Kim, Chan Dong;Hur, Jang Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.495-501
    • /
    • 2016
  • The measurement of icing conditions needs to be carried out accurately by the ice detector system of an aircraft. Ice detector systems should be installed in locations not affected by backwash, rotor downwash or moving doors or other equipment. Various analyses were carried out in order to find the proper locations sufficiently far from these interfering effects. In this study, the optimum position of the ice detector was assessed using computer simulation, with respect to different flight modes, flow velocities and the amount and distribution of liquid water around the sensor.

Removal of Suspended Solids Using a Flexible Fiber Filter in a Recirculating Aquaculture System (유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거)

  • Choi, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • The suitability of a flexible fiber filter for removing suspended solid (SS) in a recirculating aquaculture system was evaluated. This study focused on variation in the performance with a change in filtering time, influent water quality, and filtering mode duration. The particle distribution diagram of the filter effluent showed that the number of particles bigger than $5-8{\mu}m$ decreased dramatically, and the removal efficiency exceeded 80%. Although the removal efficiencies of SS and chemical oxygen demand (COD) were dependent on the quality of the influent, the SS and COD concentrations of the effluent were not affected by the influent concentrations. This was despite the deterioration if water quality after feeding in the rearing tank. The performance of the filter was not affected by the filtering mode duration, feeding conditions, or filtering time. The SS concentration and turbidity of the recirculating-type rearing tank were 30% and 50% lower, respectively, than of the a non-recirculating-type rearing tank under the same operating conditions. The flexible fiber filter was applicable to a recirculating aquaculture system that uses plenty of seawater, based on its low filtering resistance $(2kg_f/cm^2)$, high flux $(330m^3/m^2/hr)$, and high fine particle removal efficiency (80%, $5-8{\mu}m$).

Biofilter pretreatment for the control of microfiltration membrane fouling

  • Park, Jae-Hyung;Satoshi Takizawa;Hiroyuki Katayama;Shinichiro Ohgaki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.31-38
    • /
    • 2003
  • A pilot scale biofilter pretreatment-microfiltration system (BF-MF) was operated to investigate the effect of biofilter treatment in fouling reduction of microfiltration. Biofiltration was expected to reduce the membrane fouling by removal of turbidity and metal oxides. The hollow-fiber MF module with a nominal pore size of 0.1$\mu$m and a surface area of 8m$^2$ was submerged in a filtration tank and microfiltration was operated at a constant flux of 0.5 m/d. Biofiltration using polypropylene pellets was performed at a high filtration velocity of 320 m/d. Two experimental setups composed of MF and BF/MF, i.e., without and with biofilter pretreatment, were compared. Throughout the experimental period of 9 months, biofilter pretreatment was effective to reduce the membrane fouling, which was proved by the result of time variations of trans-membrane pressure and backwash conditions. The turbidity removal rate by biofiltration varied between 40% to 80% due to the periodic washing for biofilter contactor and raw water turbidity. In addition to turbidity, metals, especially Mn, Fe and Al were removed effectively with average removal rates of 89.2%, 67.8% and 64.9%, respectively. Further analysis of foulants on the used membranes revealed that turbidity and metal removal by biofiltration was the major effect of biofiltration pretreatment against microfiltration fouling.

  • PDF

Textural Characters of the Overwash Mark Sediments on the Berm of the Nobong Beach Environment, East Sea of Korea (동해안 해빈(노봉 해빈) 환경의 Overwash Mark 퇴적물의 조직 특성)

  • 박용안;최경식;김수정
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • During the last three years (1997∼2000), a research project of beach dynamic environmental process and dynamic nature of the Nobong Beach, East Sea of Korea has been carried out for a better understanding of beach cycle (winter and summer). In fact, however, this paper deals with a particular feature of beach dynamics, that is, overwash process of overwash water and its sediments. The overwash mark sediments (OMS) are analyzed to understand various textural characters.

  • PDF

Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag

  • Noh, Jin H.;Lee, Sang-Hyup;Choi, Jae-Woo;Maeng, Sung Kyu
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.181-188
    • /
    • 2018
  • A sidestream contains the filtrate or concentrate from the belt filter press, filter backwash and supernatant from sludge digesters. The sidestream flow, which heads back into the sewage treatment train, is about 1-3% less than the influent flow. However, the sidestream can increase the nutrient load since it contains high concentrations of phosphorus and nitrogen. In this study, the removal of PO4-P with organic matter characteristics and bacteriological changes during the sidestream treatment via ladle furnace (LF) slag was investigated. The sidestream used in this study consisted of 11-14% PO4-P and 3.2-3.6% soluble chemical oxygen demand in influent loading rates. LF slag, which had a relatively high $Ca^{2+}$ release compared to other slags, was used to remove $PO_4-P$ from the sidestream. The phosphate removal rates increased as the slag particle size decreased 19.1% (2.0-4.0 mm, 25.2% (1.0-2.0 mm) and 79.9% (0.5-1.0 mm). The removal rates of dissolved organic carbon, soluble chemical oxygen demand, color and aromatic organic matter ($UV_{254}$) were 17.6, 41.7, 90.2 and 77.3%, respectively. Fluorescence excitation-emission matrices and liquid chromatography-organic carbon detection demonstrated that the sidestream treatment via LF slag was effective in the removal of biopolymers. However, the removal of dissolved organic matter was not significant during the treatment. The intact bacterial biomass decreased from $1.64{\times}10^8cells/mL$ to $1.05{\times}10^8cells/mL$. The use of LF slag was effective for the removal of phosphate and the removal efficiency of phosphate was greater than 80% for up to 100 bed volumes.