• Title/Summary/Keyword: backside exposure

Search Result 5, Processing Time 0.022 seconds

Fabrication of a Bottom Electrode for a Nano-scale Beam Resonator Using Backside Exposure with a Self-aligned Metal Mask

  • Lee, Yong-Seok;Jang, Yun-Ho;Bang, Yong-Seung;Kim, Jung-Mu;Kim, Jong-Man;Kim, Yong-Kweon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.546-551
    • /
    • 2009
  • In this paper, we describe a self-aligned fabrication method for a nano-patterned bottom electrode using flood exposure from the backside. Misalignments between layers could cause the final devices to fail after the fabrication of the nano-scale bottom electrodes. A self-alignment was exploited to embed the bottom electrode inside the glass substrate. Aluminum patterns act as a dry etching mask to fabricate glass trenches as well as a self-aligned photomask during the flood exposure from the backside. The patterned photoresist (PR) has a negative sidewall slope using the flood exposure. The sidewall slopes of the glass trench and the patterned PR were $54.00^{\circ}$ and $63.47^{\circ}$, respectively. The negative sidewall enables an embedment of a gold layer inside $0.7{\mu}m$ wide glass trenches. Gold residues on the trench edges were removed by the additional flood exposure with wet etching. The sidewall slopes of the patterned PR are related to the slopes of the glass trenches. Nano-scale bottom electrodes inside the glass trenches will be used in beam resonators operating at high resonant frequencies.

Effect of Photosensitive Carbon Nanotube Paste on Field Emission Properties (감광성 탄소나노튜브 페이스트의 조성과 열처리가 전계방출 특성에 미치는 영향)

  • Oh, Jeong-Seob;Kim, Dae-Jun;Jeong, Jin-Woo;Song, Yoon-Ho;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.550-556
    • /
    • 2006
  • Photosensitive carbon nanotube (CNT) pastes are explored to develop a CNT field emitter for field emission display (FED) application. We formulated a photosensitive paste including multi-walled CNTs (MWNTs) for screen printing. The photosensitive CNT paste was synthesized by mixing of MWNTs, inorganic fillers (nano metal), organic vehicle, monomers and photo initiator. The CNT paste films were patterned by using backside exposure technique. The CNTs were strongly fixed on a cathode by formation of carbon residue during firing process. For the CNT emitters, current-voltage(I-V) characteristics and images of field emission were evaluated. The emission properties of CNT emitters are dependent on the paste composition. A turn-on electric field for the CNT field emitters is measured to be 1 V/$\mu$m. Additionally, the effect of heat treatment parameter on field emission properties was discussed. The newly formulated photosensitive CNT paste can be potentially applicable to highly reliable CNT field emitters.

Evaluation of Asymetric Film-Screen System (비대칭(非對稱) 필름-스크린 시스템에 관한 검토(檢討))

  • Huh, Joon;Kim, Jung-Min;Lee, Sun-Sook;Lee, In-Ja;Choi, Jong-Hak;Kim, Sung-Soo
    • Journal of radiological science and technology
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 1993
  • Asymetric system have been introduced in these years by KODAK company nam of Insight system for the purpose of improve the chest image. We have had a problem of chest radiology that it is very difficult to visualize the lung field and modiastinal region at one shot. That's why we are the RT using the technique of high voltage hard quality radiography in chest radiography. Also it is known the c-type wide latitude film can lift up the density of mediastinal structures. Authors investigated the photographic characteristics and physical structure of Insight system. Method 1. Investigated the structure of Emulsion layer. Calculated the particle size of Insight system using SEM(Scanning Electron Microscope). 2. Photographic characteristics has been compared the Insight system with the ortho KM/MG combination in $60{\sim}120kV$ range. Results 1. The particle size of backside film were investigated about 2 times larger that of front side film. 2. The front and backscreen's thickness ratio was detected 1 : 3.87, that the backscreen's thickness was thicker than frontscreen. 3. At the view point of photographic characteristics the frontside of insight system make up the contrast, backside make up the density at low exposure lesion.

  • PDF

A Development of Tapered Metallic Microneedle Array for Bio-medical Application (생체의학에 적용 가능한 테이퍼형태의 금속성 마이코로니들 어레이의 개발)

  • Che Woo Seong;Lee Jeong-Bong;Kim Kabseog;Kim Kyunghwan;Jin Byung-Uk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.59-66
    • /
    • 2004
  • This paper presents a novel fabrication process for a tapered hollow metallic microneedle array using backside exposure of SU-8, and analytic solutions of critical buckling of a tapered hollow microneedle. An SU-8 meta was formed on a Pyrex glass substrate and another SU-8 layer, which was spun on top of the SU-8 mesa, was exposed through the backside of the glass substrate. An array of SU-8 tapered pillar structures. with angles in the range of $3.1^{\circ}{\sim}5^{\circ}$ was formed on top of the SU-8 mesa. Conformal electrodeposition of metal was carried out followed by a mechanical polishing using a pianarizing polymeric layer. All organic layers were then removed to create a metallic hollow microneedle array with a fluidic reservoir on the backside. Both $200{\mu}m\;and\;400{\mu}m$ tall, 10 by 10 arrays of metallic microneedles with inner diameters of the tip in the range of $33.6{\sim}101\;{\mu}m$ and wall thickness of $10{\mu}m\;-\;20{\mu}m$ were fabricated. Analytic solutions of the critical buckling of arbitrary-angled truncated cone-shaped columns are also presented. It was found that a single $400{\mu}m$ tall hollow cylindrical microneedle made of electroplated nickel with a wall thickness of $20{\mu}m$, a tapered angle of $3.08^{\circ}$ and a tip inner diameter of $33.6{\mu}m$ has a critical buckling force of 1.8 N. This analytic solution can be used for square or rectangular cross-sectioned column structures with proper modifications.

  • PDF

Fabrication of Carbon Microneedle Arrays with High Aspect Ratios and The Control of Hydrophobicity of These Arrays for Bio-Applications (고종횡비 탄소 마이크로니들 어레이의 제조 및 생체응용을 위한 소수성 표면의 제어)

  • Lee, Jung-A;Lee, Seok-Woo;Lee, Seung-Seob;Park, Se-Il;Lee, Kwang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1721-1725
    • /
    • 2010
  • This paper reports the fabrication of geometry-controlled carbon microneedles by a backside exposure method and pyrolysis. The SU-8 microneedles are a polymer precursor in a carbonization process, which geometries such as base diameter, spacing, and aspect ratio can be controlled in a photolithography step. Using this fabrication method, highly reproducible carbon microneedles, which have high aspect ratios of more than 10 and very sharp nanotips, can be realized. The quartz surface with carbon microneedles becomes very hydrophilic and its wettability is adjusted by carrying out the silane treatment. In the carbon microneedle array ($3\;{\mu}m{\times}3\;{\mu}m$), the contact angle is extremly enhanced (${\sim}180^{\circ}$); this will be advantageous in developing low-drag microfluidics and labs-on-a-chip as well as in other bio-applications.