• Title/Summary/Keyword: backpropagation method

Search Result 262, Processing Time 0.035 seconds

Fuzzy Supervised Learning Algorithm by using Self-generation (Self-generation을 이용한 퍼지 지도 학습 알고리즘)

  • 김광백
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1312-1320
    • /
    • 2003
  • In this paper, we consider a multilayer neural network, with a single hidden layer. Error backpropagation learning method used widely in multilayer neural networks has a possibility of local minima due to the inadequate weights and the insufficient number of hidden nodes. So we propose a fuzzy supervised learning algorithm by using self-generation that self-generates hidden nodes by the compound fuzzy single layer perceptron and modified ART1. From the input layer to hidden layer, a modified ART1 is used to produce nodes. And winner take-all method is adopted to the connection weight adaptation, so that a stored pattern for some pattern gets updated. The proposed method has applied to the student identification card images. In simulation results, the proposed method reduces a possibility of local minima and improves learning speed and paralysis than the conventional error backpropagation learning algorithm.

  • PDF

Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation

  • Septiarini, Anindita;Harjoko, Agus;Pulungan, Reza;Ekantini, Retno
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.335-345
    • /
    • 2018
  • Objectives: The retinal nerve fiber layer (RNFL) is a site of glaucomatous optic neuropathy whose early changes need to be detected because glaucoma is one of the most common causes of blindness. This paper proposes an automated RNFL detection method based on the texture feature by forming a co-occurrence matrix and a backpropagation neural network as the classifier. Methods: We propose two texture features, namely, correlation and autocorrelation based on a co-occurrence matrix. Those features are selected by using a correlation feature selection method. Then the backpropagation neural network is applied as the classifier to implement RNFL detection in a retinal fundus image. Results: We used 40 retinal fundus images as testing data and 160 sub-images (80 showing a normal RNFL and 80 showing RNFL loss) as training data to evaluate the performance of our proposed method. Overall, this work achieved an accuracy of 94.52%. Conclusions: Our results demonstrated that the proposed method achieved a high accuracy, which indicates good performance.

Probabilistic bearing capacity assessment for cross-bracings with semi-rigid connections in transmission towers

  • Zhengqi Tang;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.309-321
    • /
    • 2024
  • In this paper, the effect of semi-rigid connections on the stability bearing capacity of cross-bracings in steel tubular transmission towers is investigated. Herein, a prediction method based on the hybrid model which is a combination of particle swarm optimization (PSO) and backpropagation neural network (BPNN) is proposed to accurately predict the stability bearing capacity of cross-bracings with semi-rigid connections and to efficiently conduct its probabilistic assessment. Firstly, the establishment of the finite element (FE) model of cross-bracings with semi-rigid connections is developed on the basis of the development of the mechanical model. Then, a dataset of 7425 samples generated by the FE model is used to train and test the PSO-BPNN model, and the accuracy of the proposed method is evaluated. Finally, the probabilistic assessment for the stability bearing capacity of cross-bracings with semi-rigid connections is conducted based on the proposed method and the Monte Carlo simulation, in which the geometric and material properties including the outer diameter and thickness of cross-sections and the yield strength of steel are considered as random variables. The results indicate that the proposed method based on the PSO-BPNN model has high accuracy in predicting the stability bearing capacity of cross-bracings with semi-rigid connections. Meanwhile, the semi-rigid connections could enhance the stability bearing capacity of cross-bracings and the reliability of cross-bracings would significantly increase after considering semi-rigid connections.

A Design and Implementation Digital Vessel Bio Emotion Recognition LED Control System (디지털 선박 생체 감성 인식 LED 조명 제어 시스템 설계 및 구현)

  • Song, Byoung-Ho;Oh, Il-Whan;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.102-108
    • /
    • 2011
  • The existing vessels lighting control system has several problems, which are complexity of construction and high cost of establishment and maintenance. In this paper, We designed low cost and high performance lighting control system at digital vessel environment. We proposed a system which recognize the user's emotions after obtaining the biological informations about user's bio information(pulse sensor, blood pressure sensor, blood sugar sensor etc) through wireless sensors controls the LED Lights. This system classified emotions using backpropagation algorithm. We chose 3,000 data sets to train the backpropagation algorithm. As a result, obtained about 88.7% accuracy. And the classified emotions find the most appropriate point in the method of controlling the waves or frequencies to the red, green, blue LED Lamp comparing with the 20-color-emotion models in the HP's 'The meaning of color' and control the brightness or contrast of the LED Lamp. In this method, the system saved about 20% of the electricity consumed.

A Learning Algorithm for a Recurrent Neural Network Base on Dual Extended Kalman Filter (두개의 Extended Kalman Filter를 이용한 Recurrent Neural Network 학습 알고리듬)

  • Song, Myung-Geun;Kim, Sang-Hee;Park, Won-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.349-351
    • /
    • 2004
  • The classical dynamic backpropagation learning algorithm has the problems of learning speed and the determine of learning parameter. The Extend Kalman Filter(EKF) is used effectively for a state estimation method for a non linear dynamic system. This paper presents a learning algorithm using Dual Extended Kalman Filter(DEKF) for Fully Recurrent Neural Network(FRNN). This DEKF learning algorithm gives the minimum variance estimate of the weights and the hidden outputs. The proposed DEKF learning algorithm is applied to the system identification of a nonlinear SISO system and compared with dynamic backpropagation learning algorithm.

  • PDF

Enhanced Backpropagation : Algorithm and Numeric Examples (개선된 역전파법 : 알고리즘과 수치예제)

  • Han Hong-Su;Choi Sang-Ung;Jeong Hyeon-Sik;No Jeong-Gu
    • Management & Information Systems Review
    • /
    • v.2
    • /
    • pp.75-93
    • /
    • 1998
  • In this paper, we propose a new algorithm(N_BP) to be capable of overcoming limitations of the traditional backpropagation(O_BP). The N_BP is based on the method of conjugate gradients and calculates learning parameters through the line search which may be characterized by order statistics and golden section. Experimental results showed that the N_BP was definitely superior to the O_BP with and without a stochastic term in terms of accuracy and rate of convergence and might surmount the problem of local minima. Furthermore, they confirmed us that the stagnant phenomenon of learning in the O_BP resulted from the limitations of its algorithm in itself and that unessential approaches would never cured it of this phenomenon.

  • PDF

Prediction of Heating-line Positions for Line Heating Process by Using a Neural Network (신경회로망을 이용한 선상가열공정의 가열선 위치선정에 관한 연구)

  • 손광재;양영수;배강열
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.31-38
    • /
    • 2003
  • Line heating is an effective and economical process for forming flat metal plates into three-dimensional shapes for plating of ships. Because the nature of the line heating process is a transient thermal process, followed by a thermo elastic plastic stress field, predicting deformed shapes of plate is very difficult and complex problem. In this paper, neural network model o3r solving the inverse problem of metal forming is proposed. The backpropagation neural network systems for determining line-heating positions from object shape of plate are reported in this paper. Two cases of the network are constructed-the first case has 18 lines which have different positions and directions and the second case has 10 parallel heating lines. The input data are vertical displacements of plate and the output data are selected heating lines. The train sets of neural network are obtained by using an analytical solution that predicts plate deformations in line heating process. This method shows the feasibility that the neural network can be used to determine the heating-line positions in line heating process.

Input-Output Linearization of Nonlinear Systems via Dynamic Feedback (비선형 시스템의 동적 궤환 입출력 선형화)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.238-242
    • /
    • 2013
  • We consider the problem of constructing observers for nonlinear systems with unknown inputs. Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

Adaption of Neural Network Algorithm for Pattern Recognition of Weld Flaws (용접결함 패턴인식을 위한 신경망 알고리즘 적용)

  • Kim, Chang-Hyun;Yu, Hong-Yeon;Hong, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • In this study, we used nondestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of weld flaws. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from weld flaws in time domain. Through this process, we compared advantages/ disadvantages of two algorithms and confirmed application methods of two algorithms.

The Performance Comparison of Classifier Algorithm for Pattern Recognition of Welding Flaws (용접결함의 패턴인식을 위한 분류기 알고리즘의 성능 비교)

  • Yoon, Sung-Un;Kim, Chang-Hyun;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2006
  • In this study, we nodestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of welding flasw. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from welding flaws in time domain. Through this process, we confirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.