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ABSTRACT

We consider the problem of constructing observers for nonlinear systems with unknown inputs.

Connectionist networks, also called neural networks, have been broadly applied to solve many

different problems since McCulloch and Pitts had shown mathematically their information

processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear

systems. Our method is different from those using supervised learning algorithms, such as the

backpropagation (BP) algorithm, that needs training information in each step. The contributions of

this thesis are the new approach to constructing neural network architecture and its training.
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I. INTRODUCTION

Control refers to a task which is to apply ap-

propriate inputs to a plant so that the plant per-

forms in a desirable way. In practical, many

control problems suffer from difficulty due to

system nonlinearity, uncertainty, and dynamic

property. To cope with this difficulty regarding

system dynamics and its environment, the con-

troller has to estimate the unknown information

during its operation. When the information per-

taining to the unknown features of the plant or

its environment is gained, if a control system

has an ability to improve its performance in the

future based on the obtained past experience, it

is called a learning control system. The need for

learning capability of control system has made

several ways for new control techniques, and

neuro-control technique is one of them. A neu-

ro-control system, in general, performs a specific

form of adaptive control, with the controller tak-

ing the form of multilayer neural network and

the adaptable parameters being defined as the

adjustable connection weights. BP is popular as

a training algorithm for multilayer feedforward

neural networks, and also popular neuro-control

algorithms. But it has some shortcomings for

practical applications. Genetic algorithms have

been utilized for many control problems. P.

Wang et al. presented a numerical example in

which a pH(potential of hydrogen) neutralization

process is regulated by a PID controller with its

parameters optimized using simple GA. A. Varš 
ek et al. employed GA to derive control rules



비선형 시스템의 동적 궤환 입출력 선형화   239

encoded as decision tables and to optimize the

parameters of the induced rules. Some re-

searchers also studied genetically optimized fuz-

zy logic control. In their study, GAs played a

role of optimizing membership functions and

fuzzy linguistic rule sets. W. Schiffmann et al.

introduced GAs to optimize the BP algorithm for

training multilayer neural networks.

Some experimental methodologies for bench-

marking of algorithms have been utilized by

neural network and machine learning

technologies. One of most popular problems is

an inverted pendulum problem(also known as

pole balancing problem). Michie and Chambers

attempted the problem using their boxes para-

digm, later improved by Barto et al.'s ASE/ACE

controller. Anderson has applied neural networks

to the problem. Jervis applied their controllers to

real inverted pendulum. We also applied our

method to the problem. Genetic algorithms do

not produce complete neural networks, it just

utilized for optimization of networks, and then

the optimized network is trained by using suit-

able learning algorithm. We applied reinforce-

ment learning, a powerful machine learning

mechanism, particularly Q-learning, to genet-

ically optimized networks.

Ⅱ. SYSTEMS AND CONTROL

2.1. Nonlinear Systems

In practical control systems, many different

types of nonlinearities are found. They may be

divided into two classes, depending on whether

they are inherent in the system or intentionally

inserted into the system, and inherent non-

linearities are unavoidable in control systems.

In a conventional way, nonlinear control prob-

lems have been solved by using linearization

technique. However, it provides a method which

is valid for only a limited range of operation.

An nth-order continuous-time system has the

following general form:

Similarly, an nth-order discrete-time system

has the following form:

for k=0, 1, 2, ... .

Those can be expressed in the vector form

2.2. Dynamics of Neural Networks

The activation function or transfer function,

denoted by F[.], maps the unbounded junction

value to a bounded output of neuron, and de-

fines the activation level of node. There are

three main classes of activation functions which

have been developed and used: Binary: The out-

put is hardlimited to binary [0, 1] or bipolar [-1,

1] values.

Ⅲ. GENETIC ALGORITHMS

Genetic algorithms are a highly parallel math-

ematical algorithms that transform a set(pop-

ulation) of mathematical objects(typically

fixed-length binary character strings), each with
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an associated fitness value, into a new set(pop-

ulation) of mathematical objects. The trans-

formation performed by GAs consists of natu-

rally occurring genetic operations and the

Darwinism of reproduction and survival of the

fittest.

3.1. Genetic Reinforcement Learning Control

In the inverted pendulum problem, each re-

al-valued string in the population is decoded to

form a network with five input units, five hid-

den units, and one output units. The network is

fully connected and this network configuration is

same as that used by Anderson with the AHC

algorithm. Since there are 35 links in the net-

work, each string used by the genetic search

includes 35+1 real values concatenated together.

Before any input is applied to the network, the

four state variables are normalized between 0

and 1. A bias unit fixed at 0.5 is also used as a

fifth input to the net; a weight from the bias

unit to a hidden node(or output node) in effect

changes the threshold behavior of that node.

The action of the neural network for a particular

set of inputs is determined from the activation

of the output unit.

Learning is stopped when a network was

found that was able to maintain the system

without generating a failure signal for 120,000

time steps. One potential problem with such a

simple evaluation criterion is that a favorable or

unfavorable start state may bias the fitness

ranking of an individual net. In other words, the

evaluation function is noisy. We would like to

assign a fitness value to a string based on its

ability to perform across all possible start states.

Ⅳ. SIMULATION RESULTS

The experiments of most researchers only at-

tempt to learn to balance the pole within the

12-degree range. Additional experiments were

carried out with failure signals occurring at two

different positions of the pole: 12 degrees and 36

degrees. In the implementation used here,

changing the angle at which the failure signal

occurs also changes the range of the input vari-

able representing the pole angle. We are there-

fore learning using a different representation of

state space. The 12-degree resiriction means

that the inverted pendulum problem has a sol-

ution that is approximately linear. At 36 degrees

the problem is nonlinear and contains many start

states where it is impossible to balance the pole.

One fact that emerged from these tests is

that AHC sometimes fails to learn. The genetic

algorithm converged to a solution in every ex-

periment, regardless of whether the failure signal

occurred at 12 and 36 degrees.

Figure 4.1 and Figure 4.2 shows results for

an AHC network and a genetically trained net-

work using a failure signal occurring at 12 de-

grees during learning. These plots illustrate the

tracking control behavior over time. During

training, the output is determined probabilisti-

cally depending on the activation of the output

unit. During testing, the action applied to the

system is obtained by deterministically thresh-

olding the activation value of the output unit. If

the activation value is greater than 0, then out-

put 1 and push right; if it is less than or equal

to 0, then output -1 and push left.

If the pole is vertical and the cart is centered

and the velocities are 0, then all state variables

will have the normalized value 0. When the

system is started in an ideal state, then a suc-

cessfully trained network will maintain the state

variables close to the 0 level. It is not possible

to balance the pole and avoid the track terminals

from all possible, a perfectly trained network

should drive all state variables back to the 0

level representing the ideal state of the system.

In Figure 4.1 and 4.2, the cart is at the far right

end of the track with the pole learning 32de-
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grees to the left; the 12-degree failure signal is

not suitable for these tests. The cart velocity

and pole velocity are initialized 0. This initial

state constitutes a position from which it is dif-

ficult for the system to recover. Both the AHC

network and the genetically trained network

used to produce these graphs are the best net-

works obtained for the 12-degree problem. In

the case of Figure 4.2, the genetically trained

network gets all of the input variables into tol-

erable ranges fairly quickly, whereas the AHC

network takes longer. The AHC network quickly

damps pole velocity and reduces oscillation in

the pole position, however at that time, the cart

almost crashes into the opposite end of the

track. The genetically trained network handles

problems with starting pole angles beyond 32

degrees, but the AHC network does not. Figure

4.3 and 4.4 show results for an AHC network

and a genetically trained network using a failure

signal at 36 degrees during learning. These plots

indicate that both AHC network and the genet-

ically trained network exploit similar information

to determine the output activation levels and

that they employ similar control strategies. The

networks trained at 36 degrees proved to be

more similar across a wider range of start

states, but as the difficulty of the initial start

states is increased the AHC networks fail sooner

than the genetically trained networks. In these

plots, the system is started with cart in the

same far right position and the pole learning 35

degrees to the left. Cart velocity and pole veloc-

ity are initially 0. These plots make it evident

that both networks track pole velocity by vary-

ing the magnitude of the output value. The cor-

relation between pole velocity and the output

activation is not as discernible in the first 50 to

100 time steps because the system is recovering

from a difficult initial situation; correlation be-

tween the pole velocity and the output activation

is much more pronounced as the networks begin

to bring the system under control. Also notable

is that cart velocity and pole velocity tend to be

negatively correlated. Given the input definitions

used in our experiments, cart velocity and pole

velocity have a similar, but opposite relationship.

V. CONCLUSIONS

In this thesis, we showed genetic algorithms

can be used for optimizing neural network top-

ology and connection weights. In addition, we

presented the optimized neural network was

good for solving nonlinear control problem. The

performance of the proposed system was con-

firmed by applying it to the inverted-pendulum

control problem.

Figure 4.1 Control results by AHC network
for 12°problem.

Overall, proposed method can be used for

nonlinear control problems. Improvement for

more nonlinear and complicated problems is the

future work.

Figure 4.2 Control results by genetically
optimized network for 12°problem.
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Figure 4.3 Control results by AHC network
for 36°problem.

Figure 4.4 Control results by genetically
optimized network for 36°problem.
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