DOI QR코드

DOI QR Code

Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation

  • Septiarini, Anindita (Department of Computer Science, Faculty of Computer Science and Information Technology, Mulawarman University) ;
  • Harjoko, Agus (Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada) ;
  • Pulungan, Reza (Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada) ;
  • Ekantini, Retno (Faculty of Medicine, Universitas Gadjah Mada)
  • Received : 2018.02.27
  • Accepted : 2018.07.15
  • Published : 2018.10.31

Abstract

Objectives: The retinal nerve fiber layer (RNFL) is a site of glaucomatous optic neuropathy whose early changes need to be detected because glaucoma is one of the most common causes of blindness. This paper proposes an automated RNFL detection method based on the texture feature by forming a co-occurrence matrix and a backpropagation neural network as the classifier. Methods: We propose two texture features, namely, correlation and autocorrelation based on a co-occurrence matrix. Those features are selected by using a correlation feature selection method. Then the backpropagation neural network is applied as the classifier to implement RNFL detection in a retinal fundus image. Results: We used 40 retinal fundus images as testing data and 160 sub-images (80 showing a normal RNFL and 80 showing RNFL loss) as training data to evaluate the performance of our proposed method. Overall, this work achieved an accuracy of 94.52%. Conclusions: Our results demonstrated that the proposed method achieved a high accuracy, which indicates good performance.

Keywords

Acknowledgement

Supported by : RISTEKDIKTI Indonesia

References

  1. Hollo G. The optic nerve in glaucoma. In: Choplin NT, Traverso CE, editors. Atlas of glaucoma. 3rd ed. Boca Raton (FL): Taylor & Francis; 2014. p. 61-71.
  2. Chakrabarty L, Joshi GD, Chakravarty A, Raman GV, Krishnadas SR, Sivaswamy J. Automated detection of glaucoma from topographic features of the optic nerve head in color fundus photographs. J Glaucoma 2016;25(7):590-7. https://doi.org/10.1097/IJG.0000000000000354
  3. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996;80(5):389-93. https://doi.org/10.1136/bjo.80.5.389
  4. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90(3):262-7. https://doi.org/10.1136/bjo.2005.081224
  5. Leung CK. Detecting optic nerve head deformation and retinal nerve fiber layer thinning in glaucoma progression. Taiwan J Ophthalmol 2015;5(2):50-5. https://doi.org/10.1016/j.tjo.2015.04.003
  6. Besenczi R, Toth J, Hajdu A. A review on automatic analysis techniques for color fundus photographs. Comput Struct Biotechnol J 2016;14:371-84. https://doi.org/10.1016/j.csbj.2016.10.001
  7. Fondon I, Nunez F, Tirado M, Jimenez S, Alemany P, Abbas Q, et al. Automatic cup-to-disc ratio estimation using active contours and color clustering in fundus images for glaucoma diagnosis. In: Campilho A, Kamel M, editors. Image analysis and recognition. Heidelberg: Springer; 2012. p. 390-9.
  8. Hsiao HK, Liu CC, Yu CY, Kuo SW, Yu SS. A novel optic disc detection scheme on retinal images. Expert Syst Appl 2012;39(12):10600-6. https://doi.org/10.1016/j.eswa.2012.02.157
  9. Septiarini A, Harjoko A, Pulungan R, Ekantini R. Optic disc and cup segmentation by automatic thresholding with morphological operation for glaucoma evaluation. Signal Image Video Process 2017;11(5):945-52. https://doi.org/10.1007/s11760-016-1043-x
  10. Pourreza-Shahri R, Tavakoli M, Kehtarnavaz N. Computationally efficient optic nerve head detection in retinal fundus images. Biomed Signal Process Control 2014;11:63-73. https://doi.org/10.1016/j.bspc.2014.02.011
  11. Singh A, Dutta MK, ParthaSarathi M, Uher V, Burget R. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Comput Methods Programs Biomed 2016;124:108-20. https://doi.org/10.1016/j.cmpb.2015.10.010
  12. Issac A, Partha Sarathi M, Dutta MK. An adaptive threshold based image processing technique for improved glaucoma detection and classification. Comput Methods Programs Biomed 2015;122(2):229-44. https://doi.org/10.1016/j.cmpb.2015.08.002
  13. Marin D, Gegundez-Arias ME, Suero A, Bravo JM. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Comput Methods Programs Biomed 2015;118(2):173-85. https://doi.org/10.1016/j.cmpb.2014.11.003
  14. Mary MC, Rajsingh EB, Jacob JK, Anandhi D, Amato U, Selvan SE. An empirical study on optic disc segmentation using an active contour model. Biomed Signal Process Control 2015;18:19-29. https://doi.org/10.1016/j.bspc.2014.11.003
  15. Mittapalli PS, Kande GB. Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed Signal Process Control 2016;24:34-46. https://doi.org/10.1016/j.bspc.2015.09.003
  16. Cheng J, Liu J, Xu Y, Yin F, Wong DW, Tan NM, et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging 2013;32(6):1019-32. https://doi.org/10.1109/TMI.2013.2247770
  17. Dashtbozorg B, Mendonca AM, Campilho A. Optic disc segmentation using the sliding band filter. Comput Biol Med 2015;56:1-12. https://doi.org/10.1016/j.compbiomed.2014.10.009
  18. Morales S, Naranjo V, Angulo U, Alcaniz M. Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans Med Imaging 2013;32(4):786-96. https://doi.org/10.1109/TMI.2013.2238244
  19. Gazarek J, Jan J, Kolar R, Odstrcilik J. Retinal nerve fibre layer detection in fundus camera images compared to results from optical coherence tomography. Proceedings of 2011 International Conference on Image Information Processing (ICIIP); 2011 Nov 3-5; Shimla, India. p. 1-5.
  20. Odstrcilik J, Kolar R, Jan J, Gazarek J, Kuna Z, Vodakova M. Analysis of retinal nerve fiber layer via Markov random fields in color fundus images. Proceedings of 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP); 2012 Apr 11-13; Vienna, Austria. p. 504-7.
  21. Prageeth PG, David J, Kumar AS. Early detection of retinal nerve fiber layer defects using fundus image processing. Proceedings of 2011 IEEE Recent Advances in Intelligent Computational Systems (RAICS); 2011 Sep 22-24; Trivandrum, India. p. 930-6.
  22. Kolar R, Jan J. Detection of glaucomatous eye via color fundus images using fractal dimensions. Radioeng 2008;17(3):109-14.
  23. Joshi GD, Sivaswamy J, Prashanth R, Krishnadas SR. Detection of peri-papillary atrophy and RNFL defect from retinal images. In: Campilho A, Kamel M, editors. Image Analysis and Recognition. Heidelberg: Springer; 2002. p. 400-7.
  24. Soh LK, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans Geosci Remote Sens 1999;37(2):780-95. https://doi.org/10.1109/36.752194
  25. Kim TY, Son J, Kim KG. The recent progress in quantitative medical image analysis for computer aided diagnosis systems. Healthc Inform Res 2011;17(3):143-9. https://doi.org/10.4258/hir.2011.17.3.143
  26. Septiarini A, Harjoko A, Pulungan R, Ekantini R. Automatic detection of peripapillary atrophy in retinal fundus images using statistical features. Biomed Signal Process Control 2018;45:151-9. https://doi.org/10.1016/j.bspc.2018.05.028
  27. Septiarini A, Khairina DM, Kridalaksana AH, Hamdani H. Automatic glaucoma detection method applying a statistical approach to fundus images. Healthc Inform Res 2018;24(1):53-60. https://doi.org/10.4258/hir.2018.24.1.53
  28. Yousefi S, Goldbaum MH, Balasubramanian M, Jung TP, Weinreb RN, Medeiros FA, et al. Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points. IEEE Trans Biomed Eng 2014;61(4):1143-54. https://doi.org/10.1109/TBME.2013.2295605
  29. Orlando JI, Prokofyeva E, Del Fresno M, Blaschko MB. An ensemble deep learning based approach for red lesion detection in fundus images. Comput Methods Programs Biomed 2018;153:115-27. https://doi.org/10.1016/j.cmpb.2017.10.017
  30. Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci 2018;441:41-9. https://doi.org/10.1016/j.ins.2018.01.051

Cited by

  1. Detection of glaucoma using retinal fundus images: A comprehensive review vol.18, pp.3, 2018, https://doi.org/10.3934/mbe.2021106