• Title/Summary/Keyword: back electron transfer

Search Result 18, Processing Time 0.022 seconds

Fabrication and Electrochemical Analysis of Back-gate FET Based on Graphene for O2 Gas Sensor

  • Kim, Jin-Hwan;Choe, Hyeon-Gwang;Kim, Jong-Yeol;Im, Gi-Hong;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.271-271
    • /
    • 2014
  • 본 연구에서는 최근 다양한 전자 소자로써의 연구가 진행되고 있는 그라핀을 SiO2/Si 기판 위에 전자빔 식각(Electron-Beam Lithography)을 이용하여 후면 게이트 전극 구조의 그라핀 채널을 갖는 삼단자 소자를 형성하고 가스 유입이 가능한 진공 Probe Measurement System을 이용하여 금속 전극과 그라핀 간의 접촉저항 (Rc) 및 길이가 다른 채널저항(Rch)를 구하고, 채널 길이, 가스 유량, 온도, 게이트 전압에 따른 I-V 변화를 측정함으로써, 후면 게이트 전극 구조의 그라핀 채널을 갖는 삼단자 소자의 가스 센서로서의 가능성을 연구하였다. 후면 게이트 전극 구조의 그라핀 채널을 갖는 삼단자 소자는 전자빔 식각(Electron-Beam Lithography)에 의해 패턴을 제작하고 Evaporator를 이용하여 전극을 증착 하였다. 소자의 소스 (Source)와 드레인 (Drain)은 TLM (Transfer Length Method)패턴을 이용하여 인접한 두 개의 전극간 범위를 변화시키는 형태로 제작함으로써 소스-드레인간 채널 길이가 다르게 하였다. 이 때 전극의 크기는 가로, 세로 각각 $20{\mu}m$, $40{\mu}m$이며 전극간 간격은 $20/30/40/50/60{\mu}m$로 서로 다르게 배열 하였다. 제작된 그라핀 소자는 진공 Probe Measurement System 내에서 게이트 전압(VG)를 변화시킴으로써 VG 변화에 따른 소자의 특성을 평가하였는데, mTorr 상태의 챔버 내로 O2 가스를 주입하여 그라핀의 Dangling bond 및 Defect site에 결합 된 가스로 인한 전기적 특성의 변화를 측정하고, 이 때 가스의 유량을 50 sccm에서 500 sccm 까지 변화시킴으로써 전기적 특성 변화를 측정하여 센서 소자의 민감도를 평가하였다. 또한, 서로 다르게 배열한 소스-드레인 간의 채널 길이로 인하여 채널과의 접촉 면적에 따른 센서 소자의 민감도 또한 평가할 수 있었다. 그리고 챔버 내 온도를 77 K에서 400 K까지 변화시킴으로써 온도에 따른 소자의 작동 범위를 확인하고 소자의 온도의존성을 평가하였다.

  • PDF

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

The Modified Electrode by PEDOP with MWCNTs-Palladium Nanoparticles for the Determination of hydroquinone and Catechol

  • Naranchimeg, Orogzodmaa;Kim, Seul-Ki;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2771-2775
    • /
    • 2011
  • Poly-ethylenedioxypyrrole (PEDOP) coated thiolated multiwall carbon nanotubes palladium nanoparticles (MWCNTs-Pd) modified glassy carbon electrode (GCE) [PEDOP/MWCNTs-Pd/GCE] for the determination of hydroquinone (HQ) and it’s isomer catechol (CA) were synthesized and compared with bare GCE and thiolated multiwall carbon nanotubes (MWCNTs-SH/GCE). The modification could be made by simple processes on a GCE with MWCNTs-Pd covered by PEDOP in a 0.05 M tetrabutylammonium perchlorate (TBAP)/MeCN solution system. A well-defined peak potential evaluation of the oxidation of hydroquinone to quinone at 0.05 V (vs. Ag/AgCl), and electrochemical reduction back to hydroquinone were found by cyclic voltammetry (CV) in phosphate buffered saline (PBS) at pH 7.4. Peak current values increased linearly with increasing hydroquinone contents. The peak separation between the anodic and cathodic peaks at the PEDOP/MWCNTs-Pd/GCE was ${\Delta}Ep$ = 40 mV for HQ and ${\Delta}Ep$ = 70 mV for CA, resulting in a higher electron transfer rate. Moreover, good reproducibility, excellent storage stability, a wide linear range (0.1 ${\mu}M$ - 5 mM for HQ and 0.01 ${\mu}M$ - 6 mM for CA), and low detection limits ($2.9{\times}10^{-8}$ M for HQ and $2.6{\times}10^{-8}$ M for CA; S/N = 3) were determined using differential pulse voltammetry (DPV) and amperometric responses; this makes it a promising candidate as a sensor for determination of HQ and CA.

Improvement of Charge Transfer Efficiency of Dye-sensitized Solar Cells by Blocking Layer Coatings (차단막 코팅에 의한 염료 태양전지의 전하전송효율 개선에 관한 연구)

  • Choi, Woo-Jin;Kim, Kwang-Tae;Kwak, Dong-Joo;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.344-348
    • /
    • 2011
  • A layer of $TiO_2$ thin film less than ~200nm in thickness, as a blocking layer, was deposited by 13.56 MHz radio frequency magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells (DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/{I_3}^-$). The presented DSCs were fabricated with working electrode of F:$SnO_2$(FTO) glass coated with blocking $TiO_2$ layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited FTO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells. The, electrochemical impedances of DSCs using this electrode were $R_1$: 13.9, $R_2$: 15.0, $R_3$: 10.9 and $R_h$: $82{\Omega}$. The $R_2$ impedance related by electron movement from nanoporous $TiO_2$ to TCO showed lower than that of normal DSCs. The photo-conversion efficiency of prepared DSCs was 5.97% ($V_{oc}$: 0.75V, $J_{sc}$: 10.5 mA/$cm^2$, ff: 0.75) and approximately 1% higher than general DSCs sample.

Selective Etching of Magnetic Layer Using CO/$NH_3$ in an ICP Etching System

  • Park, J.Y.;Kang, S.K.;Jeon, M.H.;Yeom, G.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.448-448
    • /
    • 2010
  • Magnetic random access memory (MRAM) has made a prominent progress in memory performance and has brought a bright prospect for the next generation nonvolatile memory technologies due to its excellent advantages. Dry etching process of magnetic thin films is one of the important issues for the magnetic devices such as magnetic tunneling junctions (MTJs) based MRAM. CoFeB is a well-known soft ferromagnetic material, of particular interest for magnetic tunnel junctions (MTJs) and other devices based on tunneling magneto-resistance (TMR), such as spin-transfer-torque MRAM. One particular example is the CoFeB - MgO - CoFeB system, which has already been integrated in MRAM. In all of these applications, knowledge of control over the etching properties of CoFeB is crucial. Recently, transferring the pattern by using milling is a commonly used, although the redeposition of back-sputtered etch products on the sidewalls and the low etch rate of this method are main disadvantages. So the other method which has reported about much higher etch rates of >$50{\AA}/s$ for magnetic multi-layer structures using $Cl_2$/Ar plasmas is proposed. However, the chlorinated etch residues on the sidewalls of the etched features tend to severely corrode the magnetic material. Besides avoiding corrosion, during etching facets format the sidewalls of the mask due to physical sputtering of the mask material. Therefore, in this work, magnetic material such as CoFeB was etched in an ICP etching system using the gases which can be expected to form volatile metallo-organic compounds. As the gases, carbon monoxide (CO) and ammonia ($NH_3$) were used as etching gases to form carbonyl volatiles, and the etched features of CoFeB thin films under by Ta masking material were observed with electron microscopy to confirm etched resolution. And the etch conditions such as bias power, gas combination flow, process pressure, and source power were varied to find out and control the properties of magnetic layer during the process.

  • PDF

Effect of Annealing on Ga2O3/Al2O3/SiC Devices Fabricated by RF Sputtering (어닐링이 RF 스퍼터링으로 제작된 Ga2O3/Al2O3/SiC 소자에 미치는 영향 연구)

  • Lee, Hee-Jae;Kim, Min-Yeong;Moon, Soo-Young;Byun, Dong-Wook;Jung, Seung-Woo;Koo, Sang-Mo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.85-89
    • /
    • 2022
  • We reported on annealing effect on Ga2O3/Al2O3/SiC devices grown by radio frequency sputtering method. Post-deposition annealing at 900 ℃ was performed, which results in crystallization in the Ga2O3 films. The major peaks (-401) and (403) of Ga2O3 which was thermally treated at 900 ℃ appears in the x-ray diffraction (XRD) results. Auger electron spectroscopy (AES) shows that Ga and Al atoms seems to be diffused into the opposite direction Al2O3 and Ga2O3 after annealing. Transfer and output characteristics of back-gate transistor were analyzed where SiC substrate is used as gate material. On-state current and on/off ratio increased almost 109 and 106 times higher in the 900 ℃ annealed sample.

Theoretical Studies of Transition Metal Carbene Complexes (Reactivities, Electronic Structures, and Diels-Alder Reaction) (전이금속의 Carbene 착물에 대한 이론적 연구 (반응성, 전자구조, Diels-Alder 반응))

  • Park Seong-Kyu;Kim IIl-Doo;Kim Joon Tae;Kim Sung-Hyun;Choi Chang-Jin;Cheun Young Gu
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.3-15
    • /
    • 1992
  • Electronic structures and reactivities of the chromium, molybdenum, and tungsten carbene complexes, $(CO)_5Cr=CCHCH_2(XCH_3)\;,\;(CO)_5Mo=CCHCH_2(XCH_3)\;, and\;(CO)_5W=CCHCH_2(XCH_3)$, are studied by means of Extended Huckel calculations. The origin of the M=Ccarbene double bond is clarified from the diagram of the orbital correlation with the fragment orbitals. The ${\sigma}$ bond of the M=Ccarbene double bond is formed by the electron transfer interaction from the HOMO of the carbene to the LUMO of the $(CO)_5M$. The ${\pi}$ bond is formed through the back-transfer of electrons from one of the degenerated d${\pi}$ orbitals to the LUMO of the carbene. The polarization of charge of the M=Ccarbene bond is calculated to be M=Ccarbene for Mo, and W carbenes. The chemical and physical properties of these complexes are resulted from an appreciable positive charge on the carbene carbon. The electrophilic reactivity of the carbene carbon is not charge controlled, but is controlled by the frontier orbital, LUMO.

  • PDF

Osmoregulation Capability of Juvenile Grey Mullets (Mugil cephalus) with the Different Salinities (어린 숭어 (Mugil cephalus)의 염분별 삼투조절 능력)

  • LEE Young Choon;CHANG Young Jin;LEE Bok Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.216-224
    • /
    • 1997
  • In order to investigate the osmoregulation capability of grey mullet, Mugil cephalus with the different salinities, juvenile fish $(13.6{\pm}0.2\;TL)$ stocked in seawater (SW) were abruptly transferred to each experimental group $0\%SW(0\%_{\circ}),\;25\%SW(7.7\%_{\circ}),\;50\%SW(16.1\%_{\circ})\;and \;100\%SW(32.8\%_{\circ})$ and reared for 60 days. Blood samples were taken by the time schedule after the transfer. Plasma $Na^{+},\;K^{+},\;Cl^{-}$ and osmolality, muscle water content, and the electron microscopical observations of chloride cells were analyzed and made by the time schedule. In $100\%SW$, the maintainable levels of plasma $Na^{+},\;K^{+},\;Cl^{-}$ and osmolality were $167.1{\pm}7.7mM/l,\;9.1{\pm}2.1mM/l,\;137.8{\pm}5.6mM/l\;and\;351{\pm}18\;mOsm/kg$, respectively. These values were significantly changed at $6h\~1\;day$ after the beginning of the experiment with four different salinities. Fish from $0\%\;and\;25\%SW$ had lower osmolalities than those of fish from $50\%\;and\;100\%SW$, and showed the hyposmotic regulation pattern. At the end of the experiment (60 days after transfer), however, no significant difference was found in the concentrations of plasma $Na^{+},\;K^{+}\;and\;Cl^{-}$ among four experimental groups. Hematocrit was increased with salinity (P<0.01). After 10 days, fish from $0\%\;and\;25\%SW$ showed the hypertrophy, fusion and edema of epithelial layer in gill lamella. However, at the 15th day, epithelial layer in gill lamella was back to the normal status. On gill of fish from $0\%SW$, one apical pit held two or three chloride cells in common. Muscle water content was subsequently regulated to near the normal levels within 4 days, and there was no significant difference among four different salinities at the end of the experiment.

  • PDF