Effect of Annealing on Ga2O3/Al2O3/SiC Devices Fabricated by RF Sputtering

어닐링이 RF 스퍼터링으로 제작된 Ga2O3/Al2O3/SiC 소자에 미치는 영향 연구

  • Lee, Hee-Jae (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, Min-Yeong (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Moon, Soo-Young (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Byun, Dong-Wook (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Jung, Seung-Woo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이희재 (광운대학교 전자재료공학과) ;
  • 김민영 (광운대학교 전자재료공학과) ;
  • 문수영 (광운대학교 전자재료공학과) ;
  • 변동욱 (광운대학교 전자재료공학과) ;
  • 정승우 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2022.06.07
  • Accepted : 2022.06.23
  • Published : 2022.06.30

Abstract

We reported on annealing effect on Ga2O3/Al2O3/SiC devices grown by radio frequency sputtering method. Post-deposition annealing at 900 ℃ was performed, which results in crystallization in the Ga2O3 films. The major peaks (-401) and (403) of Ga2O3 which was thermally treated at 900 ℃ appears in the x-ray diffraction (XRD) results. Auger electron spectroscopy (AES) shows that Ga and Al atoms seems to be diffused into the opposite direction Al2O3 and Ga2O3 after annealing. Transfer and output characteristics of back-gate transistor were analyzed where SiC substrate is used as gate material. On-state current and on/off ratio increased almost 109 and 106 times higher in the 900 ℃ annealed sample.

Keywords

Acknowledgement

This work was supported by Technology Innovation Program (20016102) grant by MOTIE, the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (20214000000700) funded by the Korea Government, and the Excellent researcher support project of Kwangwoon University in 2022.

References

  1. Wu, J., Mi, W., Yang, Z., Chen, Y., Li, P., Zhao, J., ... & Luan, C. (2019). Influence of annealing on the structural and optical properties of gallium oxide films deposited on c-sapphire substrate. Vacuum, 167, 6-9. https://doi.org/10.1016/j.vacuum.2019.05.034
  2. Altuntas, H., Donmez, I., Ozgit-Akgun, C., & Biyikli, N. (2014). Effect of postdeposition annealing on the electrical properties of β-Ga2O3 thin films grown on p-Si by plasma-enhanced atomic layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 32(4), 041504. https://doi.org/10.1116/1.4875935
  3. Yadav, M. K., Mondal, A., Das, S., Sharma, S. K., & Bag, A. (2020). Impact of annealing temperature on band-alignment of PLD grown Ga2O3/Si (100) heterointerface. Journal of Alloys and Compounds, 819, 153052. https://doi.org/10.1016/j.jallcom.2019.153052
  4. Wang, Y., Xu, W., You, T., Mu, F., Hu, H., Liu, Y., ... & Hao, Y. (2020). β-Ga2O3 MOSFETs on the Si substrate fabricated by the ion-cutting process. Science China Physics, Mechanics & Astronomy, 63(7), 1-4. https://doi.org/10.1007/s11425-018-9502-y
  5. Byun, D. W., Lee, Y. J., Oh, J. M., Schweitz, M. A., & Koo, S. M. (2021). Morphological and Electrical Properties of β-Ga2O3/4H-SiC Heterojunction Diodes. Electronic Materials Letters, 17(6), 479-484. https://doi.org/10.1007/s13391-021-00297-6
  6. Lee, Y. J., Schweitz, M. A., Oh, J. M., & Koo, S. M. (2020). Influence of annealing atmosphere on the characteristics of Ga2O3/4H-SiC nn heterojunction diodes. Materials, 13(2), 434. https://doi.org/10.3390/ma13020434
  7. Vaca, D., Yates, L., Nepal, N., Katzer, D. S., Downey, B. P., Wheeler, V., ... & Kumar, S. (2020, July). Thermal Conductivity of β-Ga2O3 Thin Films Grown by Molecular Beam Epitaxy. In 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1011-1016). IEEE.
  8. Bar-Cohen, A., Albrecht, J. D., & Maurer, J. J. (2011, October). Near-junction thermal management for wide bandgap devices. In 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (pp. 1-5). IEEE.
  9. Jian, Z., Sayed, I., Liu, W., Mohanty, S., & Ahmadi, E. (2021). Characterization of MOCVD-grown AlSiO gate dielectric on β-Ga2O3 (001). Applied Physics Letters, 118(17), 172102. https://doi.org/10.1063/5.0048990
  10. Singh, A. K., Gupta, M., Sathe, V., & Katharria, Y. S. (2021). Effect of annealing temperature on β-Ga2O3 thin films deposited by RF sputtering method. Superlattices and Microstructures, 156, 106976. https://doi.org/10.1016/j.spmi.2021.106976
  11. Makeswaran, N., Battu, A. K., Deemer, E., & Ramana, C. V. (2020). Crystal Growth and Structure-Property Optimization of Thermally Annealed Nanocrystalline Ga2O3 Films. Crystal Growth & Design, 20(5), 2893-2903. https://doi.org/10.1021/acs.cgd.9b01130
  12. Eklund, P., Sridharan, M., Singh, G., & Bottiger, J. (2009). Thermal Stability and Phase Transformations of γ-/Amorphous-Al2O3 Thin Films. Plasma processes and polymers, 6(S1), S907-S911. https://doi.org/10.1002/ppap.200932301
  13. Zhang, L., Jiang, H. C., Liu, C., Dong, J. W., & Chow, P. (2007). Annealing of Al2O3 thin films prepared by atomic layer deposition. Journal of Physics D: Applied Physics, 40(12), 3707. https://doi.org/10.1088/0022-3727/40/12/025
  14. Hirose, M., Nabatame, T., Yuge, K., Maeda, E., Ohi, A., Ikeda, N., ... & Kiyono, H. (2019). Influence of post-deposition annealing on characteristics of Pt/Al2O3/β-Ga2O3 MOS capacitors. Microelectronic Engineering, 216, 111040. https://doi.org/10.1016/j.mee.2019.111040
  15. Goyal, A., Yadav, B. S., Thakur, O. P., Kapoor, A. K., & Muralidharan, R. (2014). Effect of annealing on β-Ga2O3 film grown by pulsed laser deposition technique. Journal of alloys and compounds, 583, 214-219. https://doi.org/10.1016/j.jallcom.2013.08.115
  16. Patel, S. L., Chander, S., Purohit, A., Kannan, M. D., & Dhaka, M. S. (2018). Influence of NH4Cl treatment on physical properties of CdTe thin films for absorber layer applications. Journal of Physics and Chemistry of Solids, 123, 216-222. https://doi.org/10.1016/j.jpcs.2018.07.021