• Title/Summary/Keyword: bacillus

Search Result 5,160, Processing Time 0.035 seconds

Increased Stability of Bacillus polyfermenticus SCD in Low pH, High Temperature and High Glucose Concentration via Three Layer Coating (Bacillus polyfermenticus SCD의 Three Layer Coating에 의한 pH, 열, 높은 glucose 농도에 대한 안정성효과)

  • 이진옥;전경동;강재선;이재화
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.221-225
    • /
    • 2004
  • Bacillus polyfermenticus SCD derived from Bacillus sp., which is commonly called as Bisroot$^{ⓡ}$. The goal of this study, is to Increase stability of Bacillus polyfermenticus SCD in low pH, high temperature and high glucose concentration via three layer coating. The viability of coated Bacillus polyfermenticus SCD increased to 30%, 20%, 14% in the condition of pH 2 4 6 than that of uncoated Bacillus polyfermenticus SCD at 37$^{\circ}C$ for 4 h. Final viability of the coated Bacillus polyfermenticus SCD in 80$^{\circ}C$ increased to 40% than that of uncoated Bacillus polyfermenticus SCD. In high glucose concentration coated Bacillus polyfermenticus SCD is more stable than uncoated about 50%. In conclusion, the three layer coated Bacillus polyfermenticus SCD is very stable for low pH, high temperature and high glucose concentration.

Effect of pH on Growth and Cultural Characteristics of Bacillus sp. SH-8 and Bacillus sp. SH-8M (Bacillus sp. SH-8과 Bacillus sp. SH-8M의 생육 및 배양 특성에 미치는 pH의 영향)

  • 심창환;신원철;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.371-376
    • /
    • 1992
  • The growth and cultural characteristics of Bacillus sp. SH-8 and SH-8M were investigated at various pH conditions. Bacillus sp. SH-8 showed normal growth pattern above pH 9.0. However, with the pH adjusted below 7.7, 0.$D_{550}$ decreased rapidly with concomitant reduction in viable cell numbers. In contrast, Bacillus sp. SH-8M demonstrated growth capability at pH 7.7, but with slightly reduced growth rate at pH 6.9. Similar results were obtained when those two strains were cultivated on the solid medium. Both of them showed short rod shapes at pH 10.2. However, at pH 7.7 only Bacillus sp. SH-8 was observed to have elongated rod shape. Extracellular pH of both the strains, when cultured at initial pH of 10.2, reached to 9.0 after the incubation of 28 hours. At the initial pH of 9.0 and 9.6, the extracellular pH was reduced at the beginning of cultivation, but elevated after 12 hours. When cultured at initial pH of 6.9 and 7.7, extracelluar pH of Bacillus sp. SH-8M increased to 8.0 and 8.7, respectively, while that of Bacillus sp. SH8 remained constant pH 7.0. The highest sporulation rate of Bacillus sp. SH-8 and SH-8M was obtained at the initial pH of 10.2 and after the incubation of 3 days with the sporulation rate of 95% and 85%, respectively.

  • PDF

Characteristics of Probiotics Isolated from Korean Traditional Foods and Antibacterial Activity of Synbiotics (한국전통발효식품에서 분리한 Probiotics의 특징 및 Synbiotics 항균활성 효과)

  • Moon, Chae-Yun;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.552-558
    • /
    • 2021
  • Traditional foods are manufactured according to the characteristics of each region for the nations of the world. Korea has mainly farmed, and seasonings have developed around rice and vegetables. In fermented foods, lactic acid bacteria such as Lactobacillus sp. and Pediococcus sp. and Bacillus sp. were isolated and identified from fermented foods. In this study, lactic acid bacteria were isolated and identified from commercially available traditional Korean fermented foods, and candidate strains were selected through antibacterial activity tests on human and fish disease bacteria. Thereafter, the final strain was selected by examining the resistance to simulated gastric and intestinal fluids, and hemolysis. The three (M1, K1, C13) final selected latic acid bacteria were miced with prebiotics and the antibacterial activity of synbiotics was evaluated. As for the fist antibacterial activity result, C13 showed high antibacterial acitivity in human diseases and fish diseases. Then, M1, K1 and C13, which did not produce β-haemolysis and were resistant to simulated gastric and intestinal fluids, were subjected to the second antibacterial activity of synbiotics. When the three prebiotics (FOS, GOS, Inulin) and probiotics (M1, K1, C13) were mixed, the antibacterial activity was increased or inhibited. Based on the 16S rRNA gene sequencing results, K1 and M1 were analyzed as Bacillus tequiensis 99.72%, Bacillus subtilis 99.65%, Bacillus inaquosorum 99.72%, Bacillus cabrialesii 99.72%, Bacillus stercoris 99.58%, Bacillus spizizenii 99.58%, Bacillus halotolerans 99.58%, and Bacillus mojavensis 99.51%. And C13 was analyzed as Bacillus velezensis 99.71%, Bacillus nematocida 99.36%, Bacillus amyloliquefaciens 99.44%, Bacillus atrophaeus 99.22%, and Bacillus nakamurai 99.44%.

Effects of Bacillus and Endospore Germinations on Organic Matter Removal (Bacillus와 내생포자 발아가 유기물 제거에 미치는 효과)

  • Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.169-175
    • /
    • 2007
  • The Bio Best Bacillus(B3) and Rotating Activated Bacillus Contactor(RABC) processes, in which Bacillus strains are predominating, are reported to remove nitrogen and phosphorus as well as organic matter effectively. Nevertheless the nutrient removal characteristics of the Bacillus strains have not been studied in detail so far. This study investigated the organic and nutrient removal by Bacillus strains, Bacillus megaterium(KCTC 3007), Paenibacillus polymyxa(KCTC 3627), and Bacillus sp. A12, C21, F12, and L1(isolated from a B3 process), by incubating the strains in 0.2% nutrient broth at $30^{\circ}C$. Burkholderia cepacia(KCTC 2966), a common activated sludge organism, was used as a reference species for comparison. Although the degradation rate was affected by the population sire, the specific removal rates of organic matter by Bacillus strains were greater by $2\sim5$ times than that of Burkholderia. In particular, the culture bottles inoculated with the endospores of Bacillus megaterium and Bacillus sp. C21, F12, and N12 showed significantly higher degradation rate than those of vegetative cells.

Physicochemical Properties of Kochujang Prepared by Bacillus sp. Koji (Bacillus sp. koji가 고추장의 품질 특성에 미치는 영향)

  • Kim, Dong-Han;Choi, Hee-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1174-1181
    • /
    • 2003
  • A part of Aspergillus oryzae koji was replaced with Bacillus sp. koji to improve the quality of kochujang, and the resulting effects on enzyme activities, microbial characteristics, and physicochemical properties were investigated during fermentation. The activity of amylase was higher in the kochujang prepared with Asp. oryzae koji. The activity of protease increased as the ratio of Bacillus. sp. koji increased. Viable cell counts of yeast and bacteria of the kochujang increased with increasing ratio of Bacillus sp. koji. The Hunter a-values of the Bacillus sp. koji kochujang were higher, and the degree of increase in the total color difference $({\Delta}\;E)$ was lower in the Bacillus sp. koji group. Consistency and water activity of the kochujang prepared with Bacillus sp. koji was higher, and the pH and titratable acidity of the kochujang also changed slightly. As the ratio of Asp. oryzae koji increased, sugar content decreased. However, the ethanol content of the kochujang did not significantly change. Amino nitrogen content of the kochujang increased, while ammonia nitrogen content decreased as the ratio of Bacillus sp. koji increased. After 12 weeks of fermentation, the result of sensory evaluation showed that C kochujang (75% of Asp. oryzae koji replaced by Bacillus sp.) was more acceptable (p<0.05) than the other groups in taste, color, flavor, and overall acceptability.

Characterization of Cellulase from Bacillus subtilis NSC Isolated from Soil (토양으로부터 단리한 Bacillus subtilis NSC 유래 Cellulase의 특성 규명)

  • Kim, Sang Jin;Park, Chang-Su
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2018
  • We isolated microorganisms from soil, which is sampled at forest, Kyeonbuk, Korea, as cellulolytic microorganisms. The isolated strains were identified by analysis of 16S rRNA gene from the starins. The result, four kinds of Bacillus subtilis, one kind of Bacillus amyloliquefaciens, and one kind of Bacillus cereus were identified. Among these strains, Bacillus subtilis was selected due to its high cellulase activity and this strain was named as Bacillus subtilis CNS. The optimum pH and temperature of the cellulase from Bacillus subtilis CNS was pH 5.0 and $40^{\circ}C$, respectively. In the investigation of pH and temperature stability, the cellulase from Bacillus subtilis NSC stabled pH 4.0~6.0 range and until $40^{\circ}C$ for 30 min perfectly. In the enzyme activity for various cellulosic substrate, cellulase from Bacillus subtilis CNS showed the highest activity for CM-cellulose. And, the enzyme activities for alkali swollen cellulose, Alpha-cellulose, Sigmacell-cellulose, and Avicel were approximately 31%, 8%, 8% and 4% of activity for CM-cellulose, respectively. In the degradation of CM-cellulose, the 0.26 U/ml and 0.52 U/ml of cellulase showed 0.43 and 0.76 U/ml activity for CM-cellulose after the reaction of 120 min, respectively.

Cellulase and Xylanase Activity of Compost-promoting Bacteria Bacillus sp. SJ21 (부숙촉진 세균 Bacillus sp. SJ21 균주의 cellulase와 xylanase 활성)

  • Shin, Pyung-Gyun;Cho, Soo-Jeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.836-840
    • /
    • 2011
  • In order to isolate thermophilic compost-promoting bacteria with high activity of cellulase and xylanase, spent mushroom substrates with sawdust were collected from mushroom cultivation farm, Jinju, Gyeongnam in Korea. Among of the isolates, one strain, designated SJ21 was selected by agar diffusion method. The strain SJ21 was identified as members of the Bacillus lincheniformis by biochemical characteristics using Bacillus ID kit and VITEK 2 system. Comparative 16S rDNA gene sequence analysis showed that strain SJ21 formed a distinct phylogenetic tree within the genus Bacillus and was most closely related to Bacillus subtilis with 16S rDNA gene sequence similarity of 99%. On the basis of its physiological properties, biochemical characteristics and phylogenetic distinctiveness, strain SJ21 was classified within the genus Bacillus, for which the name Bacillus sp. SJ21 is proposed. The cellulase and xylanase activity of Bacillus sp. SJ21 was slightly increased according to bacterial population from exponential phase to stationary phase in growth curve for Bacillus sp. SJ21.

Identification of the Predominant Bacillus, Enterococcus, and Staphylococcus Species in Meju, a Spontaneously Fermented Soybean Product (메주 발효 관련 Bacillus, Enterococcus, Staphylococcus 속 우점종 확인)

  • Jang, Mihyun;Jeong, Do-Won;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.359-363
    • /
    • 2019
  • Meju is a spontaneously fermented soybean product produced in Korea. We isolated the bacteria of the genera Bacillus, Enterococcus, and Staphylococcus from 12 meju samples collected from five regions of Korea using selective media, and we identified them based on the sequence analysis of 16S ribosomal RNA and gmk (guanylate kinase) genes. Bacillus and Enterococcus strains were identified from all samples and the numbers of Bacillus strains in the 11 samples were >15% of the total cell number. Therefore, the genus Bacillus was confirmed as the predominant bacterial group of meju. Staphylococcus strains were identified from six samples. The identified 151 Bacillus isolates predominated in the following order: B. velezensis, B. sonorensis, B. subtilis, and B. licheniformis. Among the 165 Enterococcus isolates, 163 strains were identified as E. faecium. Eighty-two Staphylococcus isolates were classified into six species of coagulase-negative Staphylococcus group and S. xylosus was the predominant species.

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains

  • Wang, Junru;Xing, Juyuan;Lu, Jiangkun;Sun, Yingjiao;Zhao, Juanjuan;Miao, Shaohua;Xiong, Qin;Zhang, Yonggang;Zhang, Guishan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.794-808
    • /
    • 2019
  • Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.

Quantification of Bacillus Species in a Wastewater Treatment System by the Molecular Analyses

  • Mori Koji;Iriye Ryozo;Hirata Mutsunori;Takamizawa Kazuhiro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.482-489
    • /
    • 2004
  • Bacillus species were observed and quantified by molecular approaches, using the 16S rDNA primers/probes, in a wastewater treatment plant designed for the purpose of stimulating the growth of Bacillus species. The plant has been operating as a test plant since 1997 in the city of Ina, Japan, with excellent treatment performance. Observations by in situ hybridization, using Bacillus-specific probes, indicated that Bacillus strains were inhabited in the plant and their num­bers decreased during the treatment process. Similar results were obtained from a quantitative PCR analysis using a Bacillus-specific primer set, and the amount of DNA originating from various Bacillus species was maximally $1.91%\$ of the total DNA in the wastewater treatment tank. Clone library analysis using the Bacillus-specific primers suggested that, while the population was no­ticeably increased, the phylogenetic diversity of the increasing Bacillus species was very low.