Quantification of Bacillus Species in a Wastewater Treatment System by the Molecular Analyses

  • Mori Koji (Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE)) ;
  • Iriye Ryozo (Departmentof Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University) ;
  • Hirata Mutsunori (Department of Bioprocessing, Faculty of Agriculture, Gifu University) ;
  • Takamizawa Kazuhiro (Department of Bioprocessing, Faculty of Agriculture, Gifu University)
  • Published : 2004.11.01

Abstract

Bacillus species were observed and quantified by molecular approaches, using the 16S rDNA primers/probes, in a wastewater treatment plant designed for the purpose of stimulating the growth of Bacillus species. The plant has been operating as a test plant since 1997 in the city of Ina, Japan, with excellent treatment performance. Observations by in situ hybridization, using Bacillus-specific probes, indicated that Bacillus strains were inhabited in the plant and their num­bers decreased during the treatment process. Similar results were obtained from a quantitative PCR analysis using a Bacillus-specific primer set, and the amount of DNA originating from various Bacillus species was maximally $1.91%\$ of the total DNA in the wastewater treatment tank. Clone library analysis using the Bacillus-specific primers suggested that, while the population was no­ticeably increased, the phylogenetic diversity of the increasing Bacillus species was very low.

Keywords

References

  1. Amann, R. I., W. Ludwig, and K. H. Schleifer (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169 https://doi.org/10.1103/PhysRev.59.143
  2. Hiraishi, A. (1988) Respiratory quinone profiles as tools for identifying different bacterial populations in activated sludge. J. Gen. Appl. Microbiol. 34: 39-56 https://doi.org/10.2323/jgam.34.39
  3. Hiraishi, A., Y. Ueda, and J. Ishihara (1998) Quinone profiling of bacterial communities in natural and synthetic sewage actuvated sludge for enhanced phosphate removal. Appl. Environ. Microbiol. 64: 992-998
  4. Auling, G., F. Pilz, H. J. Busse, S. Karrasch, M. Streichan, and G. Schon (1991) Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp. Appl. Environ. Microbiol. 57: 3585-3592
  5. Brigmon, R. L., G. Bitton, S. G. Zam, and B. O'Brien (1995) Development and application of a monoclonal antibody against Thiothrix spp. Appl. Environ. Microbiol. 61: 13-20
  6. Palmer, C. J., Y. L. Tsai, C. Paszko-Kolva, C. Mayer, and L. R. Sangermano (1993) Detection of Legionella species in sewage and ocean water by polymerase chain reaction, direct fluorescent-antibody, and plate culture methods. Appl. Environ. Microbiol. 59: 3618-3624
  7. Hall, S. J., J. Keller, and L. L. Blackall (2003) Microbial quantification in activated sludge: The hits and misses. Wat. Sci. Technol. 48: 121-126
  8. Kanagawa, T., Y. Kamagata, S. Aruga, T. Kohno, M. Horn, and M. Wagner (2000) Phylogenetic analysis of and oligonucleotide probe development for eikelboom type 021N filamentous bacteria isolated from bulking activated sludge. Appl. Environ. Microbiol. 66: 5043-5052 https://doi.org/10.1128/AEM.66.11.5043-5052.2000
  9. Snaidr, J., R. Amann, I. Huber, W. Ludwig, and K. H. Schleifer (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63: 2884-2896
  10. Sekiguchi, Y., Y. Kamagata, K. Nakamura, A. Ohashi, and H. Harada (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65: 1280-1288
  11. Amann, R., H. Lemmer, and M. Wagner (1998) Monitoring the community structure of wastewater treatment plants: A comparison of old and new techniques. FEMS Microbiol. Ecol. 25: 205-215 https://doi.org/10.1111/j.1574-6941.1998.tb00473.x
  12. Manz, W., M. Wagner, R. Amann, and K.H. Schleifer (1994) In situ characterization of the microbial consortia active in two wastewater treatment plants. Wat. Res. 28: 1715-1723 https://doi.org/10.1016/0043-1354(94)90243-7
  13. Kaewpipat, K. and C. P. Grady, Jr. (2002) Microbial population dynamics in laboratory-scale activated sludge reactors. Wat. Sci. Technol. 46: 19-27 https://doi.org/10.1007/BF02763259
  14. Kreuzinger, N., A. Farnleitner, G. Wandl, R. Hornek, and R. Mach (2003) Molecular biological methods (DGGE) as a tool to investigate nitrification inhibition in wastewater treatment. Wat. Sci. Technol. 47: 165-172
  15. Yoshie, S., N. Noda, T. Miyano, S. Tsuneda, A. Hirata, and Y. Inamori (2002) Characterization of microbial community in nitrogen removal process of metallurgic wastewater by PCR-DGGE. Wat. Sci. Technol. 46: 93-98
  16. LaPara, T. M., C. H. Nakatsu, L. Pantea, and J. E. Alleman (2000) Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol. 66: 3951-3959 https://doi.org/10.1128/AEM.66.9.3951-3959.2000
  17. Sekiguchi, Y., Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144: 2655-2665 https://doi.org/10.1099/00221287-144-9-2655
  18. Bond, P. L., P. Hugenholtz, J. Keller, and L. L. Blackall (1995) Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61: 1910-1916
  19. Yi, S., J.H. Tay, A. M. Maszenan, and S. T.L. Tay (2002) A culture-independent approach for studying microbial diversity in aerobic granules. Wat. Sci. Technol. 47: 283-290
  20. Wagner, M., R. Amann, H. Lemmer, and K. H. Schleifer (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520-1525
  21. Iriye, R. and H. Takatsuka (1999) Studies on the improvement of sewage treatment by increasing/dominating Bacillus spp. J. Antibact. Antifung. Agents 27: 431-440
  22. Murakami, K., B. S. Lee, Y. Doi, M. Aoki, and R. Iriye (1996) Dominant growth of Bacillus sp. in the aerobic digestion tank of night soil. 1st IAWQ Specialized Conference on Sequencing Batch Reactor Technology. Munich, Germany
  23. Iriye, R. (1999) Bacillus spp. dominance in the improvement of domestic wastewater treatment using fumus soil. J. Antibact. Antifung. Agents 27: 723-732
  24. Lee, B.S., M. Aoki, R. Iriye, S. Tabata, K. Murakami, and K. Tateishi (1996) The identification of strains of Bacillus sp. and Oerskovia sp. as the dominantly growing bacteria involved in the aerobic and malodrelss treatment of waste. J. Antibact. Antifung. Agents 24: 709-717
  25. Ajithkumar, V. P., B. Ajithkumar, R. Iriye, and T. Sakai (2002) Bacillus funiculus sp.: Novel filamentous isolates from activated sludge. Int. J. Syst. Evol. Microbiol. 52: 1141-1144 https://doi.org/10.1099/ijs.0.02115-0
  26. Ajithkumar, V. P., B. Ajithkumar, K. Mori, K. Takamizawa, R. Iriye, and S. Tabata (2001) A novel filamentous Bacillus sp., strain NAF001, forming endospores and budding cells. Microbiology 147: 1415-1423 https://doi.org/10.1099/00221287-147-6-1415
  27. Eaton, A. D., L. S. Clesceri, and A. E. Greenberg (1995) Standard Methods for the Examination of Water and Wastewater. 19th ed., American Public Health Association, Washington, USA
  28. Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Ta-kamizawa (2000) Isolation and characterization of a tetra-chloroethylene dechlorinating bacterium, Clostridium bifer-mentans DPH-1. J. Biosci. Bioeng. 89: 489-491 https://doi.org/10.1016/S1389-1723(00)89102-1
  29. Mori, K., R. Sparling, M. Hatsu, and K. Takamizawa (2003) Quantification and diversity of the archaeal community in a landfill site. Can. J. Microbiol. 49: 28-36 https://doi.org/10.1139/w03-006
  30. Hattori, S., Y. Kamagata, S. Hanada, and H. Shoun (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 50: 1601-1609 https://doi.org/10.1099/00207713-50-4-1601
  31. Stahl, D. A., B. Flesher, H. R. Mansfield, and L. Montgomery (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079-1084
  32. Amann, R. (1995) In situ identification of micro-orga-nisms by whole cell hybridization with rRNA-targeted nucleic acid probes. pp. 1-15. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds.). Molecular Microbial Ecology Manual. Dordrecht, Kluwer Academic Publishers, USA
  33. Saitou, N. and M. Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  34. Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) Clustal-W-improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  35. Choi, Y. S., S. W. Hong, S. J. Kim, and I. H. Chung (2002) Development of a biological process for livestock wastewater treatment using a technique for predominant outgrowth of Bacillus species. Wat. Sci. Technol. 45: 71-78