• Title/Summary/Keyword: b-y Ions

Search Result 590, Processing Time 0.025 seconds

A Study on the Surface Modification of Polyimide Film by lon Implantation (이온주입법에 의한 폴리이미드박막의 표면 개질에 대한 연구)

  • 김종택;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.293-297
    • /
    • 1998
  • The influence of ion implantation on surface properties of polymers was studied. We investigated microhardness, friction, wear and wettablility of polyimide. Energies of 50, 200keV were used with doses range from $1{\times}10^{13} to 1{\times}10^{16} [ions/cm^2]$. The implanted ion species were B, N and Ar. The microhardness of polyimide was increased after implantation for doses of $1{\times}10^{15}\; [ions/cm^2]$. A reduction of the friction coefficient was in most case correlated with a reduction of wear. The contact angles of water for $B^+,N^+$ implanted polyimide decreased from $76^{\circ}C$ to zero, as the fluencies increased at energies of 50 and 200 KeV. However, the contact angle of Ar ion implanted polyimide did not change under ambient room conditions even if the time elapsed. SEM measurement was performed to characterize the modified surface layer.

  • PDF

Chemiluminescence System with Air Pump as a Sensor for Determination of Metal Levels in Rain

  • Hong, Hyuck-Gi;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1937-1940
    • /
    • 2005
  • A lab-made chemiluminescence system with air pump was developed for monitoring of some metal levels in rain. The air pump enabled injection of 17.7 $\mu$g samples into a glass cell filled with luminol-$H_2O_2$ reagent of typically 300 $\mu$L for chemiluminescence measurement. The monitored trend of total metal ions in the rain collected in our campus was compared with analytical results of each metal ion from GFAAS. The system was also demonstrated to determine $Cr^{6+}$ by reduction to $Cr^{3+}$ using $SnCl_2$. The limit of detection for $Cr^{6+}$ obtained by 4 measurements was 85.0 pg $mL^{-1}$ with a relative standard deviation of 3.4%. Although this system doesn’t have selectivity due to the characteristics of chemiluminescence, application of it to environmental monitoring as a sensor for some transition metal ions was demonstrated.

Effect of Residual Lithium Ions on the Structure and Cytotoxicity of Silk Fibroin Film

  • Yang, Yesol;Kwak, Hyo Won;Lee, Ki Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.265-270
    • /
    • 2013
  • Dialysis is the rate-limiting step in the preparation of aqueous silk fibroin (SF) solution. However, the traditional practice of dialyzing SF solution for at least 48 h to remove LiBr is not based on empirical evidence. The aim of the present study was to systematically measure LiBr content in SF solutions dialyzed for varying lengths of time and assess the potential toxicity of residual lithium ions in cells. Complete removal of lithium ions was not achieved even after 72 h of dialysis, with a residual lithium ion content in the solution of 22.85 mg/l. SF films prepared from solutions dialyzed for 8 and 24 h had predominantly random coil or b-sheet structures, respectively. The residual lithium had little cytotoxicity in NIH3T3 fibroblast cells, but viability was compromised in cells grown on SF film prepared from solution dialyzed for 24 h.

Influence of Pulsed Electric Field on Accumulation of Calcium in Lactobacillus rhamnosus B 442

  • Goral, Malgorzata;Pankiewicz, Urszula;Sujka, Monika;Kowalski, Radoslaw;Giral, Dariusz;Kozlowicz, Katarzyna
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.44-53
    • /
    • 2020
  • Calcium is an element that performs many important functions in the human body. A study was conducted on the use of a pulsed electric field (PEF) to enrich cells of Lactobacillus rhamnosus B 442 in calcium ions. The highest concentration of calcium ions in bacterial cells (7.30 mg/g d.m.) was obtained at ion concentration of 200 ㎍/ml of medium and with the use of the following PEF parameters: field strength 3.0 kV/cm, exposure time 10 min, pulse width 75 ms and 20 h of culturing after which bacteria were treated with the field. Cell biomass varied in the range from 0.09 g/g d.m. to 0.252 g/g d.m., and the total number of bacteria ranged from 1010 CFU/ml to 1012 CFU/ml. Microscope photographs prove that calcium ions were situated within the cells of the bacteria, and electroporation contributed to an increase in the effectiveness of the ion bioaccumulation process. Samples containing calcium and subjected to electroporation displayed intensive fluorescence. The significance of this research was the possibility of using probiotic bacteria enriched with calcium ions for the production of functional food in subsequent studies.

Structural Phase Transition, Electronic Structure, and Magnetic Properties of Sol-gel-prepared Inverse-spinel Nickel-ferrites Thin Films

  • Kim, Kwang Joo;Kim, Min Hwan;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) were used to investigate the influence of Ni ions on the structural, electronic, and magnetic properties of nickel-ferrites ($Ni_xFe_{3-x}O_4$). Spinel $Ni_xFe_{3-x}O_4$ ($x{\leq}0.96$) samples were prepared as polycrystalline thin films on $Al_2O_3$ (0001) substrates, using a sol-gel method. XRD patterns of the nickel-ferrites indicate that as the Ni composition increases (x > 0.3), a structural phase transition takes place from cubic to tetragonal lattice. The XPS results imply that the Ni ions in $Ni_xFe_{3-x}O_4$ substitute for the octahedral sites of the spinel lattice, mostly with the ionic valence of +2. The minority-spin d-electrons of the $Ni^{2+}$ ions are mainly distributed below the Fermi level ($E_F$), at around 3 eV; while those of the $Fe^{2+}$ ions are distributed closer to $E_F$ (~1 eV below $E_F$). The magnetic hysteresis curves of the $Ni_xFe_{3-x}O_4$ films measured by VSM show that as x increases, the saturation magnetization ($M_s$) linearly decreases. The decreasing trend is primarily attributable to the decrease in net spin magnetic moment, by the $Ni^{2+}$ ($2{\mu}_B$) substitution for octahedral $Fe^{2+}$ ($4{\mu}_B$) site.

Electrical Properties of G4-48PyP Dendrimer LB Films complex with Metal Ions (금속이온 착체에 의한 G4-48PyP 덴드리머 LB막의 전기적 특성)

  • Jung, S.B.;Yoo, S.Y.;Park, J.C.;Kwon, Y.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.769-772
    • /
    • 2002
  • Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach. Peculiar features of the dendritic geometry are the large number of end groups as well as the shape persistence in higher generations, approaching spherical geometry. And one of the most peculiar characteristics of dendritic macromolecules is their controlled molecular structure and orientation, which means that they have a practical application in achieving a highly organized molecular arrangement. We attempted to fabricate a dendrimer LB films containing 48 pyridinepropanol functional end group. As the pyridinepropanol functional group could form a complex structure with metal ions. We investigated the surface activity of dendrimer films at air-water interface compared with pure dendrimer and its complex with $Fe^{2+}$ ions into subphase. We though that metal ions are contributed to networking or branching reaction between dendrimers. And we expected that it can result in the differences on the electrical properties. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage characteristics of metal dendrimer LB films/metal (MIM) structure.

  • PDF

The Hyperfine Interaction for the FeIn2S4 by Mössbauer Spectroscopy (뫼스바우어 효과를 통한 FeIn2S4에서의 Fe2+ 초미세 상호 작용 연구)

  • Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.30-33
    • /
    • 2007
  • The $FeIn_2S_4$ exhibits an inverse spinel which Fe ions are occupied to the octahedral(B) site, while In ions are occupied to both the tetrahedral(A) and the octahedral(B) site. The $N\'{e}el$ temperature($T_N$) is determined to be 13 K. The effective moment of $FeIn_2S_4$ found to be $5.094{\mu}_B$ from the fit of Curie-Weiss inverse susceptibility for the temperature range over $T_N$, implying angular momentum contribution. The angular momentum contribution is shown in $M\"{o}ssbauer$ spectra for the antiferromagnetic ordering region($T{\leq}\;13K$), too. A weak $Fe^{2+}(B)-S^2-Fe^{2+}(B)$ interaction is responsible for a low $N\'{e}el$ temperature($T_N$) in $FeIn_2S_4$ system. The temperature dependence of electric quadrupole interaction is explained by z-axial crystalline field energy.

Crystal Growth and Second Harmonic Generation of YCa$_4$O$({BO_3})_3$ (YCa$_4$O$({BO_3})_3$ 단결정 성장 및 2차고조파 발생)

  • Yu, Young-Moon;A. Ageyev;Jeong, Suk-Jong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.88-89
    • /
    • 2000
  • The properties for self-frequency doubling (SFD) is unique phenomena for a small number of special single crystals. It is known that there are serious limitations to vary the concentration of active ions, for example high doping of active ions from 1 to 50 atomic %, in nonlinear materials. Until now, the Nd:YAl$_3$(BO$_3$)$_4$ (YAB) and Nd:(Ce,Gd)Sc$_3$(BO$_3$)$_4$ (CSB) crystals with high doping rates are well studied for the application of SFD purpose. They have much useful SFD properties, but also have big problems in crystal growth. In case of YAB crystal, it can be grown by solution melt method with very low growth rates and easy occurrence of inclusions. In case of CSB crystal, it has optically heterogeneity problems because of disarrangement of ions in huntite structure [1]. These problems make above crystals not so attractive for optical applications. Some popular nonlinear materials, such as LiNbO$_3$(LN), KTiOPO$_4$(KTP), LiB$_3$O$_{5}$ (LBO) crystals, are impossible to substitute by Rare Earth activators because of their crystallo-chemical problems of structure. When we dope active ions with the requisite concentrations for laser generation, it results in decreasing of optical quality of crystals or destroying of acentrosymmetric structure. (omitted)d)

  • PDF