Browse > Article
http://dx.doi.org/10.4014/jmb.1908.08064

Influence of Pulsed Electric Field on Accumulation of Calcium in Lactobacillus rhamnosus B 442  

Goral, Malgorzata (Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences)
Pankiewicz, Urszula (Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences)
Sujka, Monika (Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences)
Kowalski, Radoslaw (Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences)
Giral, Dariusz (Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences)
Kozlowicz, Katarzyna (Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.1, 2020 , pp. 44-53 More about this Journal
Abstract
Calcium is an element that performs many important functions in the human body. A study was conducted on the use of a pulsed electric field (PEF) to enrich cells of Lactobacillus rhamnosus B 442 in calcium ions. The highest concentration of calcium ions in bacterial cells (7.30 mg/g d.m.) was obtained at ion concentration of 200 ㎍/ml of medium and with the use of the following PEF parameters: field strength 3.0 kV/cm, exposure time 10 min, pulse width 75 ms and 20 h of culturing after which bacteria were treated with the field. Cell biomass varied in the range from 0.09 g/g d.m. to 0.252 g/g d.m., and the total number of bacteria ranged from 1010 CFU/ml to 1012 CFU/ml. Microscope photographs prove that calcium ions were situated within the cells of the bacteria, and electroporation contributed to an increase in the effectiveness of the ion bioaccumulation process. Samples containing calcium and subjected to electroporation displayed intensive fluorescence. The significance of this research was the possibility of using probiotic bacteria enriched with calcium ions for the production of functional food in subsequent studies.
Keywords
PEF; calcium; Lactobacillus rhamnosus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vavrusova M, Skibsted LH. 2014. Calcium nutrition. Bioavailability and fortification. LWT - Food Sci. Technol. 59: 1198-1204.   DOI
2 Vavrusova M, Danielsen BP, Garcia AC, Skibsted LH. 2018. Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability. J. Food Drug Anal. 26: 330-336.   DOI
3 Titchenal CA, Dobbs J. 2007. A system to assess the quality of food sources of calcium. J. Food Compost Anal. 20: 717-724.   DOI
4 Camara-Martos F, Amaro-Lopez MA. 2002. Influence of dietary factors on calcium bioavailability. Biol. Trace Elem. Res. 89: 43-52.   DOI
5 Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. 2011. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. BMJ 342: d2040.   DOI
6 Reid IR, Bristow SM. 2016. Calcium fortified foods or supplements for older people?. Maturitas 85: 1-4.   DOI
7 Rooney MR, Michos ED, Hootman KC, Harnack L, Lutsey PL. 2018. Trends in calcium supplementation, National Health and Nutrition Examination Survey (NHANES) 1999-2014. Bone 111: 23-27.   DOI
8 Cha JY, Cho YS. 2009. Determination of optimal conditions for zinc hyperaccumulation by Saccharomyces cerevisiae FF-10. J. Korean Soc. Appl. Biol. Chem. 52: 227-233.   DOI
9 Wang MS, Wang LH, Bekhit AEDA, Yang J, Hou ZP, Wang YZ, et al. 2018. A review of sublethal effects of pulsed electric field on cells in food processing. J. Food Eng. 223: 32-41.   DOI
10 Suchanek M, Olejniczak Z. 2018. Low field MRI study of the potato cell membrane electroporation by pulsed electric field.? J. Food Eng. 231: 54-60.   DOI
11 Escoffre JM, Portet T, Wasungu L, Teissie J, Dean D, Rols MP. 2009. What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol. Biotechnol. 41: 286-295.   DOI
12 Dermol-Cerne J, Miklavcic D, Rebersek M, Mekuc P, Bardet SM, Burke R, et al. 2018. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability. Bioelectrochemistry 122: 103-114   DOI
13 Teissie J, Golzio M, Rols MP. 2005. Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of) knowledge. Biochim. Biophys. Acta 1724: 270-280.   DOI
14 Vaessen EMJ, den Besten HMW, Patra T, van Mossevelde NTM, Boom RM, Schutyser MAI. 2018. Pulsed electric field for increasing intracellular trehalose content in Lactobacillus plantarum WCFS1. Innov. Food Sci. Emerg. Technol. 47: 256-261.   DOI
15 Kolosnjaj-Tabi J, Gibot L, Fourquaux I, Golzio M, Rols MP. 2018. Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv. Drug Deliv. Rev. 138: 56-67.
16 Phez E, Gibot L, Rols MP. 2016. How transient alterations of organelles in mammalian cells submitted to electric field may explain some aspects of gene electrotransfer process. Bioelectrochemistry 112: 166-172.   DOI
17 Toepfl S, Siemer C, Saldana-Navarro G, Heinz V. 2014. Overview of pulsed electric fields processing for food. pp. 93-114. In Emerging technologies for food processing. Academic Press.
18 Hristov K, Mangalanathan U, Casciola M, Pakhomova ON, Pakhomov AG. 2018. Expression of voltage-gated calcium channels augments cell susceptibility to membrane disruption by nanosecond pulsed electric field. Biochim. Biophys. Acta Biomembr. 1860: 2175-2183.   DOI
19 Liu ZW, Zeng XA, Sun DW, Han Z. 2014. Effects of pulsed electric fields on the permeabilization of calcein-filled soybean lecithin vesicles. J. Food Eng. 131: 26-32.   DOI
20 Jorhem L, Engman J. 2000 Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL1 collaborative study. J. AOAC Int. 83: 1189-1203.   DOI
21 American Public Health Association. 1993. Standard Methods for the Examination of Dairy Products, 16th ed. APHA, Washington, DC.
22 Goral M, Pankiewicz U. 2017. Effect of pulsed electric fields (PEF) on Accumulation of magnesium in Lactobacillus rhamnosus B 442 Cells. J. Membr. Biol. 250: 565-572.   DOI
23 Goral M, Pankiewicz U, Sujka M, Kowalski R. 2019. Bioaccumulation of zinc ions in Lactobacillus rhamnosus B 442 cells under treatment of the culture with pulsed electric field. Eur. Food Res. Technol. 245: 817-824.   DOI
24 Marafon AP, Sumi A, Alcantara MR, Tamime AY, De Oliveira MN. 2011. Optimization of the rheological properties of probiotic yoghurts supplemented with milk proteins. LWT - Food Sci. Technol. 44: 511-519.   DOI
25 Raso J, Frey W, Ferrari G, Pataro G, Knorr D, Teissie J, et al. 2016. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov. Food Sci. Emerg. Technol. 37: 312-321   DOI
26 Silve A, Leray I, Poignard C, Mir LM. 2016. Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses. Sci. Rep. 6: 19957.   DOI
27 Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, et al. 2015. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Int. 77: 773-798.   DOI
28 Pankiewicz U, Jamroz J. 2013. Application of pulsed electric field for enrichment of Saccharomyces cerevisiae cells with calcium ions. Ital. J. Food Sci. 25: 394-402.
29 Roman J, Gniewosz M, Mantorska J. 2009. Comparison of magnesium binding, growth and acidifying properties of Lactobacillus brevis and Lactobacillus plantarum in an environment with elevated magnesium concentration. Acta Scient. Pol. Biotechnol. 8: 27-36 (in Polish).
30 Morschbacher AP, Dullius A, Dullius CH, Bandt CR, Kuhn D, Brietzke DT, et al. 2018. Assessment of selenium bioaccumulation in lactic acid bacteria. J. Dairy Sci. 101: 10626-10635.   DOI
31 Ouwehand AC, Salminen S, Isolauri E. 2002. Probiotics: an overview of beneficial effects. In Siezen RJ, Kok J, Abee T, Schaafsma G. Eds., Lactic Acid Bacteria: Genetics, Metabolism and Applications. pp. 279-289. Springer Netherlands.
32 Mrvcic J, Prebeg T, Barisic L, Stanzer D, Bacun-Druzina V, Stehlik-Tomas V. 2009. Zinc binding by lactic acid bacteria. Food Technol. Biotechnol. 47: 381-388.
33 Mrvcic J, Stanzer D, Bacun-Druzina V, Stehlik-Tomas V. 2009. Copper binding by lactic acid bacteria (LAB). Biosci. Microflora. 28: 1-6.   DOI
34 Sanchez B, Delgado S, Blanco-Miguez A, Lourenco A, Gueimonde M, Margolles A. 2017. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 61: 1600240.   DOI
35 Ziarno M, Wieclawski S. 2006. The effect of an addition of calcium lactate on the growth of lactic acid fermentation bacteria in MRS broth and in milk. Zywnosc Nauka Technologia Jakosc 13: 110-119 (in Polish).
36 Pirkul T, Temiz A, Erdem YK. 1997. Fortification of yoghurt with calcium salts and its effect on starter microorganisms and yoghurt quality. Int. Dairy J. 7: 547-552.   DOI
37 Seratlic S, Bugarski B, Nedovic V, Radulovic Z, Wadso L, Dejmek P, Galindo FG. 2013. Behavior of the surviving population of Lactobacillus plantarum 564 upon the application of pulsed electric fields. Innov. Food Sci. Emerg. Technol. 17: 93-98.   DOI
38 Gurtler JB, Rivera RB, Zhang HQ, Geveke DJ. 2010. Selection of surrogate bacteria in place of E. coli O157: H7 and Salmonella Typhimurium for pulsed electric field treatment of orange juice. Int. J. Food Microbiol. 139: 1-8.   DOI
39 Tang AL, Shah NP, Wilcox G, Walker KZ, Stojanovska L. 2007. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids. J. Food Sci. 72: M431-M436.   DOI
40 Huang S, Yang Y, Fu N, Qin Q, Zhang L, Chen XD. 2014. Calcium-aggregated milk: a potential new option for improving the viability of lactic acid bacteria under heat stress. Food Bioproc. Tech. 7: 3147-3155.   DOI
41 Ulmer HM, Heinz V, Ganzle MG, Knorr D, Vogel RF. 2002. Effects of pulsed electric fields on inactivation and metabolic activity of Lactobacillus plantarum in model beer. J. Appl. Microbiol. 93: 326-335.   DOI
42 Pankiewicz U, Jamroz J, Sujka M, Kowalski R. 2015. Visualization of calcium and zinc ions in Saccharomyces cerevisiae cells treated with PEFs (pulse electric fields) by laser confocal microscopy. Food Chem. 188: 16-23.   DOI