Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.2.111

Structural Phase Transition, Electronic Structure, and Magnetic Properties of Sol-gel-prepared Inverse-spinel Nickel-ferrites Thin Films  

Kim, Kwang Joo (Department of Physics, Konkuk University)
Kim, Min Hwan (Department of Physics, Konkuk University)
Kim, Chul Sung (Department of Physics, Kookmin University)
Publication Information
Abstract
X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) were used to investigate the influence of Ni ions on the structural, electronic, and magnetic properties of nickel-ferrites ($Ni_xFe_{3-x}O_4$). Spinel $Ni_xFe_{3-x}O_4$ ($x{\leq}0.96$) samples were prepared as polycrystalline thin films on $Al_2O_3$ (0001) substrates, using a sol-gel method. XRD patterns of the nickel-ferrites indicate that as the Ni composition increases (x > 0.3), a structural phase transition takes place from cubic to tetragonal lattice. The XPS results imply that the Ni ions in $Ni_xFe_{3-x}O_4$ substitute for the octahedral sites of the spinel lattice, mostly with the ionic valence of +2. The minority-spin d-electrons of the $Ni^{2+}$ ions are mainly distributed below the Fermi level ($E_F$), at around 3 eV; while those of the $Fe^{2+}$ ions are distributed closer to $E_F$ (~1 eV below $E_F$). The magnetic hysteresis curves of the $Ni_xFe_{3-x}O_4$ films measured by VSM show that as x increases, the saturation magnetization ($M_s$) linearly decreases. The decreasing trend is primarily attributable to the decrease in net spin magnetic moment, by the $Ni^{2+}$ ($2{\mu}_B$) substitution for octahedral $Fe^{2+}$ ($4{\mu}_B$) site.
Keywords
nickel-ferrite; spinel; phase transition; magnetization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, and C. Muthamizhchelvan, J. Alloys Compd. 563, 6 (2013).   DOI   ScienceOn
2 S. Ivanova, E. Zhecheva, R. Stoyanova, D. Nihtianova, S. Wegner, P. Tzvetkova, and S. Simova, J. Phys. Chem. C 115, 25170 (2011).   DOI
3 M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, and A. C. Basaran, J. Magn. Magn. Mater. 321, 157 (2009).   DOI   ScienceOn
4 S. S. R. Inbanathan, V. Vaithyanathan, J. A. Chelvane, G. Markandeyulu, and K. K. Bharathi, J. Magn. Magn. Mater. 353, 41 (2014).   DOI   ScienceOn
5 P. D. Thang, G. Rijnders and D. H. A. Blank, J. Magn. Magn. Mater. 310, 2621 (2007).   DOI   ScienceOn
6 A. Goldman, Modern Ferrite Technology, 2nd ed., Springer, New York, 2006.
7 S. B. Ogale, K. Ghosh, R. P. Sharma, R. L. Greene, R. Ramesh and T. Venkatesan, Phys. Rev. B 57, 7823 (1998).   DOI
8 K. J. Kim, T. Y. Koh, C. S. Kim, and Y. B. Lee, J. Korean Phys. Soc. 64, 93 (2014).   DOI   ScienceOn
9 Y. S. Dedkov, U. Rudiger, and G. Guntherodt, Phys. Rev. B 65, 064417 (2002).   DOI   ScienceOn
10 W. Wang, M. Yu, M. Batzill, J. He, U. Diebold, and J. Tang. Phys. Rev. B 73, 134412 (2006).   DOI   ScienceOn
11 T. Fujii, F. M. F. de Groot, G. A. Sawatzky, F. C. Voogt, T. Hibma, and K. Okada, Phys. Rev. B 59, 3195 (1999).   DOI   ScienceOn
12 K. J. Kim, J. H. Lee, and C. S. Kim, J. Korean Phys. Soc. 61, 1274 (2012).   DOI   ScienceOn
13 A. K. Singh, T. C. Goel, and R. G. Mendiratta, Solid State Commun. 125, 121 (2003).   DOI   ScienceOn
14 R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).   DOI
15 S. Altieri, L. H. Tjeng, A. Tanaka, and G. A. Sawatzky, Phys. Rev. B 61, 13403 (2000).   DOI   ScienceOn