• Title/Summary/Keyword: b-amyloid

Search Result 69, Processing Time 0.021 seconds

Protective Effects of Bacillus coagulans JA845 against D-Galactose/AlCl3-Induced Cognitive Decline, Oxidative Stress and Neuroinflammation

  • Song, Xinping;Zhao, Zijian;Zhao, Yujuan;Jin, Qing;Li, Shengyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.212-219
    • /
    • 2022
  • Recently, the efficacy of probiotics in treatment of neurodegenerative disorders has been reported in animal and clinical studies. Here, we assessed the effects of Bacillus coagulans JA845 in counteracting the symptoms of D-galactose (D-gal)/AlCl3-induced Alzheimer's disease (AD) in a mice model through behavioral test, histological assessment and biochemical analysis. Ten weeks of pre-treatment with B. coagulans JA845 prevented cognitive decline, attenuated hippocampal lesion and protected neuronal integrity, which demonstrated the neuroprotective features of B. coagulans JA845 in vivo. We also found that supplementation of B. coagulans JA845 alleviated amyloid-beta deposits and hyperphosphorylated tau in hippocampus of D-gal/AlCl3-induced AD model mice. Furthermore, B. coagulans JA845 administration attenuated oxidative stress and decreased serum concentration of inflammatory cytokines by regulating the Nrf2/HO-1 and MyD88/TRAF6/NF-κB pathway. Our results demonstrated for the first time that B. coagulans has the potential to help prevent cognitive decline and might be a novel therapeutic approach for the treatment of neurodegenerative diseases.

The effect of scopoletin on Aβ-induced neuroinflammatory response in microglial BV-2 cells

  • Mun, Hui-Jin;Cho, Hyun-Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.165-170
    • /
    • 2020
  • In this paper, it was confirmed that scopoletin inhibits neuroinflammation induced by amyloid beta oligomer (Aβ1-42) in microglial BV-2. The mechanisms of inflammatory cytokines and inflammatory mediators by scopoletin were identified. Alzheimer's disease is the most common neurodegenerative disease, but it is a disease whose specific etiology is unknown, and many studies are trying to solve it. We first measured the cell viability with the CCK-8 assay method to confirm that scopoletin and Aβ1-42 are toxic to BV-2 cells. Expression levels of interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor-κB (NF-κB) in inflammatory reactions induced by Aβ1-42 with western blot were analyzed. The ANOVA assay was used to compare protein expression differences between BV-2 cells treated with Aβ1-42 alone and BV-2 cells pretreated with Aβ1-42 and scopoletin. Therefore, this study suggested that scopoletin is worth developing as a neuroinflammatory protection agent for Alzheimer's disease in the future.

The Effects of Daejo-hwan(DJR) on the Alzheimer's Disease Model Induced by ${\beta}$-amyloid. (대조환(大造丸) 추출물이 ${\beta}$-amyloid로 유도된 Alzheimer's disease 병태(病態)모델에 미치는 영향)

  • Lee, Ji-In;Chung, Dae-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.3
    • /
    • pp.55-82
    • /
    • 2007
  • Ohjective: This research investigates the effect of the DJR on Alzheimer's disease. Method: 1.The effects of the DJR extract on IL.-$1{\beta}$, IL-6, TNF-${\alpha}$, cox-2, and NOS-II mRNA of BV2 microglia cell line treated with LPS; 2. the behavior: 3. the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with ${\beta}$A were investigated. Result: 1. The DJR extract suppressed the expression of IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ mRNA in BV2 microglia cell line treated with LPS. 2. The DJR extract suppressed the expression of IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ protein production in BV2 microglia cell line treated with LPS. 3. For the DJR extract group a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by .${\beta}$A in the Moms water maze experiment, which measured stop-through latency, and distance movement-through latency. 4. The DJR extract suppressed the over-expression of IL-$1{\beta}$ protein, TNF-${\alpha}$ protein and CD68/CD11b, in the mice with Alzheimer's disease induced by ${\beta}$A 5. The DJR extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}$A. 6. The DJR extract reduced the tau protein, GFAP protein, and presenilin1/2 protein (immunohistochemistry) of hippocampus in the mice with Alzheimer's disease induced by ${\beta}$A. Conclusion: These results suggest that the DJR extract may he effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the DJR extract for Alzheimer's disease of suggested for future research.

  • PDF

Neuroprotective Effect of L-Theanine on Aβ-Induced Neurotoxicity through Anti-Oxidative Mechanisms in SK-N-SH and SK-N-MC Cells

  • Jo, Mi-Ran;Park, Mi-Hee;Choi, Dong-Young;Yuk, Dong-Yeun;Lee, Yuk-Mo;Lee, Jin-Moo;Jeong, Jae-Hwang;Oh, Ki-Wan;Lee, Moon-Soon;Han, Sang-Bae;Hong, Jin-Tae
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.288-295
    • /
    • 2011
  • Amyloid beta ($A{\beta}$)-induced neurotoxicity is a major pathological mechanism of Alzheimer's disease (AD). In this study, we investigated the inhibitory effect of L-theanine, a component of green tea (Camellia sinensis) on $A{\beta}_{1-42}$-induced neurotoxicity and oxidative damages of macromolecules. L-theanine inhibited $A{\beta}_{1-42}$-induced generation of reactive oxygen species, and activation of extracellular signal-regulated kinase and p38 mitogenic activated protein kinase as well as the activity of nuclear factor kappa-B. L-theanine also signifi cantly reduced oxidative protein and lipid damage, and elevated glutathione level. Consistent with the reduced neurotoxic signals, L-theanine (10-50 ${\mu}g$/ml) concomitantly attenuated $A{\beta}_{1-42}$ (5 ${\mu}M$)-induced neurotoxicity in SK-N-MC and SK-N-SH human neuroblastoma cells. These data indicate that L-theanine on $A{\beta}$-induced neurotoxicity prevented oxidative damages of neuronal cells, and may be useful in the prevention and treatment of neurodegenerative disease like AD.

Panaxcerol D from Panax ginseng ameliorates the memory impairment induced by cholinergic blockade or Aβ25-35 peptide in mice

  • Keontae Park;Ranhee Kim;Kyungnam Cho;Chang Hyeon Kong;Mijin Jeon;Woo Chang Kang;Seo Yun Jung;Dae Sik Jang ;Jong Hoon Ryu
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.59-67
    • /
    • 2024
  • Background: Alzheimer's disease (AD) has memory impairment associated with aggregation of amyloid plaques and neurofibrillary tangles in the brain. Although anti-amyloid β (Aβ) protein antibody and chemical drugs can be prescribed in the clinic, they show adverse effects or low effectiveness. Therefore, the development of a new drug is necessarily needed. We focused on the cognitive function of Panax ginseng and tried to find active ingredient(s). We isolated panaxcerol D, a kind of glycosyl glyceride, from the non-saponin fraction of P. ginseng extract. Methods: We explored effects of acute or sub-chronic administration of panaxcerol D on cognitive function in scopolamine- or Aβ25-35 peptide-treated mice measured by several behavioral tests. After behavioral tests, we tried to unveil the underlying mechanism of panaxcerol D on its cognitive function by Western blotting. Results: We found that pananxcerol D reversed short-term, long-term and object recognition memory impairments. The decreased extracellular signal-regulated kinases (ERK) or Ca2+/calmodulin-dependent protein kinase II (CaMKII) in scopolamine-treated mice was normalized by acute administration of panaxcerol D. Glial fibrillary acidic protein (GFAP), caspase 3, NF-kB p65, synaptophysin and brainderived neurotrophic factor (BDNF) expression levels in Aβ25-35 peptide-treated mice were modulated by sub-chronic administration of panaxcerol D. Conclusion: Pananxcerol D could improve memory impairments caused by cholinergic blockade or Aβ accumulation through increased phosphorylation level of ERK or its anti-inflammatory effect. Thus, panaxcerol D as one of non-saponin compounds could be used as an active ingredient of P. ginseng for improving cognitive function.

Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation

  • Yu, Un Young;Yoo, Byong Chul;Ahn, Jung-Hyuck
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2014
  • Overexpression of amyloid precursor protein with the Swedish mutation causes abnormal hyperphosphorylation of the microtubule-associated protein tau. Hyperphosphorylated isoforms of tau are major components of neurofibrillary tangles, which are histopathological hallmarks of Alzheimer's disease. Protein phosphatase 2A (PP2A), a major tau protein phosphatase, consists of a structural A subunit, catalytic C subunit, and a variety of regulatory B subunits. The B subunits have been reported to modulate function of the PP2A holoenzyme by regulating substrate binding, enzyme activity, and subcellular localization. In the current study, we characterized regulatory B subunit-specific regulation of tau protein phosphorylation. We showed that the PP2A B subunit PPP2R2A mediated dephosphorylation of tau protein at Ser-199, Ser-202/Thr-205, Thr-231, Ser-262, and Ser-422. Down-regulation of PPP2R5D expression decreased tau phosphorylation at Ser-202/Thr-205, Thr-231, and Ser-422, which indicates activation of the tau kinase glycogen synthase kinase 3 beta ($GSK3{\beta}$) by PP2A with PPP2R5D subunit. The level of activating phosphorylation of the $GSK3{\beta}$ kinase Akt at Thr-308 and Ser-473 were both increased by PPP2R5D knockdown. We also characterized B subunit-specific phosphorylation sites in tau using mass spectrometric analysis. Liquid chromatography-mass spectrometry revealed that the phosphorylation status of the tau protein may be affected by PP2A, depending on the specific B subunits. These studies further our understanding of the function of various B subunits in mediating site-specific regulation of tau protein phosphorylation.

Effects of a Mixture Ginseng Radix, Chaenomelis Fructus on the Mice Model of Alzheimer's Disease (인삼(人蔘), 목과(木瓜) 추출액이 Alzheimer성 치매의 병태(病態) 모델에 미치는 영향)

  • Han, Sin-Hee;Kil, Gi-Jung
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • Objectives : This research was investigated the effect of the Ginseng Radix plus Chaenomelis Fructus on Alzheimer's disease. Methods : Specifically, the effects of the Ginseng Radix plus Chaenomelis Fructus extract on $IL-1{\beta}$, $TNF-{\alpha}$ of BV2 microglia cell line treated with lipopolysacchride. Results : The Ginseng Radix plus Chaenomclis Fructus extract suppressed the over-expression of $IL-1{\beta}$ protein, $TNF-{\alpha}$ protein, MDA, and CD68/CD11b, in the mice with Alzheimer's disease induced by ${\beta}$ amyloid peptide. Conclusion: These results suggest that the Ginseng Radix plus Chaenomelis Fructus extract may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the Ginseng Radix plus Chaenomelis Fructus extract for Alzheimer's disease is suggested for future research.

  • PDF