• Title/Summary/Keyword: azo dye

Search Result 135, Processing Time 0.032 seconds

The Study on Degradation of Azo Dyes by Proteus sp. ST-1 (Proteus sp. ST-1에 의한 Azo계 색소의 분해에 관한 연구)

  • Park, Hyung-Sook;Ha, Sang-Tae;Lee, Young-Guen
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.71-81
    • /
    • 1996
  • Direct Sky Blue-5B is an Azo dye known as general for staining of textile and leather, etc., and as materials which are difficult to be biodegraded in nature. The bacterium strain which could degrade direct Sky Blue-5B was isolated from activated sludge of dyeing factory and identified as Proteus sp. by experiment on morphological, cultural and biochemical characteristics, and so named Proteus sp. ST-1. The optimum condition of the strain for degradation of Sky Blue-5B were at about 35$^{\circ}C$ and PH 7~8. The strain had been capable of degradation with organic nitrogen effectively and had completely degraded 200mg/1 of the dye within 12hrs at 37$^{\circ}C$. The enzyme system related to degradation of Azo dye may be intracellular, and so degraded the dye after absorption into cell. The degradation products of Sky Blue-5B by Proton sp. 57-1 were analyzed by Gas Chromatography /Mass Spectrometry and Spectrophotomer, from this observation, it may be infered that the strain degraded the dye directly without any mediate.

  • PDF

Properties of PMMA Dyed with Reactive Azo Dye (반응성 아조염료로 착색한 PMMA의 성질)

  • Geum, Neri;Heo, Ji-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.426-431
    • /
    • 2006
  • Acryl and vinyl sulfone functionalized blue and orange azo dyes were prepared by the coupling reaction of 6-bromo-2-cyano-4-nitroaniline and 2,5-dimethoxy-4-(vinylsulfonyl)benzenamine with 3-acrylamido-(N,N-diethylamino)benzene and 3-methyl-(N,N-diethylamino)benzene, respectively, for the coloring of poly(methyl methacrylate) (PMMA). Allyl functionalized dye was also prepared by reacting vinyl sulfone-containing dye with allylamine. Three types of dyeing method were used: the copolymerization of reactive dye with methyl methacrylate (MMA) and dyeing by polymerization of MMA in the presence of polymeric dye and dye 2 without reactive function. The color fastness for the three PMMAs were evaluated by comparing the solubility of dye under various conditions.

Studies on the Oxidative Structural Change of Azo Dye Acid Red 27 by Ozone (O3에 의한 아조염료 Acid Red 27의 산화분해시 구조 변화에 관한 연구)

  • Baek, Mi-Hwa;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.564-568
    • /
    • 2005
  • The structural change of azo dye (Acid Red 27) by oxidation with ozone has been investigated using FT-IR and $^1H$ NMR. The solution pH was observed to decrease during oxidation reaction, which was considered to be due to the generation of several organic and inorganic acids as the result of the decomposition of azo compound. The FT-IR analysis showed that changes of specific absorption bands of Acid Red 27 were observed after ozonation. When azo dye was oxidized by ozone, several new peaks were shown to appear by $^1H$ NMR analysis and the peaks were generally shifted to the direction of up field. This was presumably due to the breakage of benzene ring contained in the molecular structure of Acid Red 27 by the oxidation and the shape of peaks was shown to change according to the reaction time.

Study for the separation and comparison of azo dyes and their diazo components (아조염료와 디아조 성분의 분리 및 비교에 관한 연구)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • Well known environmental wastes from dye industry were separated by the micellar electrokinetic capillary chromatography(MECC). These wastes include H-acid modifier and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. The results of the separation were compared with the result obtained by the HPLC using ion-pairing mechnism. MECC method was also applied to separate a few direct dyes including Direct Blue 2, Direct Blue 6 and Direct Blue 15, and reactive dye such as Reactive Orange 4. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid which are used as diazo components of the typical azo dyes. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.

The dyeability and light fastness of amino azobenzene derivatives disperse dye( I ) (아미노 아조벤젠계 분산염료의 염색성 및 내광성(I))

  • Choi, Chang Nam;Lim, Seung Hee;Ryu, Hee Seok;Park, Hyung In;Hong, Sung Hak
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.24-30
    • /
    • 1996
  • In order to investigate the light fastness of amino azo disperse dyes, some kinds of disperse dyes were prepared and dyed to polyester fabric under the different conditions, such as single or mixture state. After the dyed fabric was irradiated with carbon arc light for several hours, the color differences and K/S values of fabric were measured. The light fastness of amino azo disperse dye was decreased by the introduction of OH group to the dye molecule. But when the amino azo dye was mixed with the anthraquinone disperse dye, the light fastness was increased. It was considered that the dye molecules were aggregated on account of hydrogen bonding via OH groups, resulting the decrease of surface area of dye molecule which might be irradiated by the light.

  • PDF

Biological Decolorization Characteristics of Dyeing Wastewater (염색폐수의 생물학적 색도제거 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Shin, Eung-Bai
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.333-341
    • /
    • 2006
  • The concept for the decolorization in biological dye wastewater treatment systems is based on anaerobic treatment, for the reductive cleavage of the dyes' azo linkages, in combination with aerobic treatment, for the degradation of the products from azo dye cleavage, aromatic amines. Batch tests were conducted to examine the conditions and the factors affecting biological treatment of dye wastewater. From the tests, the removal efficiencies of organics and colors of dyeing wastewater were improved to $COD_{Cr}$ 27% and color 9% by injecting 10% of the domestic wastewater as a cosubstrate, and $COD_{Cr}$ 30%, color 22% with 30% injection of domestic wastewater. Therefore it was proved that decolorization efficiency is demonstrated with domestic wastewater as a cosubstrate. The analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently.

Degradation of Reactive Black 5 by potassium ferrate(VI) (페레이트를 활용한 아조 염료 Reactive Black 5 분해 연구)

  • Minh Hoang Nguyen;Il-kyu Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.17-27
    • /
    • 2024
  • This paper aims to study the degradation process for refractory azo dye namely Reactive Black 5(RB5) by potassium ferrate(VI) synthesized using the wet oxidation method. The process of degradation of azo dyes by Ferrate was studied with several parameters such as pH, different Ferrate(VI) dosage, different azo dye initial concentration, and temperature. A second-order reaction was observed in all degradation processes for RB5 having the highest degradation efficiency. The highest kapp value of RB5 degradation was 190.49 M-1s-1. In the pH experiments, the neutral condition has been identified as the optimum condition for the degradation of RB5 with 63.2% of dye removal. The efficiency of degradation also depends on the amount of ferrate(VI) available in the reactor. Degradation efficiency increased with an increase in Potassium Ferrate(VI) dosage or a decrease of RB5 initial concentration. The temperature has been reported as one of the most important parameters. From the results, increasing the temperature(up to 45℃) will increase the degradation efficiency of azo dye by Ferrate(VI) and if the temperature exceeds 45℃, the degradation efficiency will be decreased.

Solvent Effects on the Electronic Spectra of Some Heterocyclic Azo Dyes

  • Behera, Pradipta Kumar;Xess, Anita;Sahu, Sachita
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.610-616
    • /
    • 2014
  • The influence of solvent polarity on the absorption spectra of some synthesized azo dye with heterocyclic moieties and ${\beta}$-naphthol (1-3) have been investigated using a UV-Visible spectrophotometer. The spectral characteristics of the azo dyes (1-3) in different solvents at room temperature were analyzed. The solvatochromic empirical variables like ${\pi}^*$, ${\alpha}$, and ${\beta}$ have been used to discuss the solvatochromic behaviour of the dyes and to evaluate their contributions to the solute-solvent interactions. A multi-parameter regression model for quantitative assessment of the solute/solvent interaction and the absorption has been used to explain the solvent effect on azo dyes (1-3).