• 제목/요약/키워드: axle load

Search Result 167, Processing Time 0.022 seconds

The Dynamics Responses of Railway Bridges Considering the Track Model (궤도모형에 따른 철도교량의 동적응답분석)

  • Kim, Sang-Hyo;Lee, Yong-Seon;Jung, Jun;Lee, Jun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.715-720
    • /
    • 2002
  • The dynamic load effects, generated by moving trains, are transferred to the railway bridges through tracks. The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges including the track system. However, the track models have been neglected or simplified by spring elements in the most studies since it is quite complicated to consider the track systems in the dynamic analysis models of railway bridges. In this study track system on railway bridges are modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. A 40m simply supported prestressed concrete box-girder system adopted for high-speed railway bridges are modeled for simulation works. The train models are composed of 20 cars for KTX. The dynamic response of railway bridges are found to be affected depending on whether the track model is considered for not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response decreases remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge, especially for KTX trains.

  • PDF

Analysis of the axle load of an agricultural tractor during plow tillage and harrowing

  • Hong, Soon-Jung;Park, Seung-Je;Kim, Wan-Soo;Kim, Yong-Joo;Park, Seong-un
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.665-669
    • /
    • 2016
  • Analysis of the load on the tractor during field operations is critical for the optimal design of the tractor. The purpose of this study was to do a load analysis of an agricultural tractor during plowing and harrowing. First, a load measurement system was developed and installed in a 71 kW agricultural tractor. Strain-gauges with a telemetry system were installed in the shaft located between the axles and the wheels, and used to measure the torque of the four driving axles. Second, field experiments were conducted for two types of field operations (plowing, harrowing), each at two gear levels (M2, M3). Third, load analysis was conducted according to field operation and gear level. At M2 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were 13,141 Nm; 4,381 Nm; and 6,971 Nm (${\pm}397.8Nm$, respectively). For harrowing, at M2 gear selection, torque values were, 14,504 Nm; 1,963 Nm; and 6,774 Nm (${\pm}459.4Nm$, respectively). At M3 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were,17,098 Nm; 6,275 Nm; and 8,509 Nm (${\pm}462.4Nm$, respectively). For harrowing at M3 gear selection, maximum, minimum, and average (S. D.) torque values were, 20,266 Nm; 2,745 Nm; and 9,968 Nm (${\pm}493.2$). The working speed of the tractor increased by approximately 143% when shifted from M2 (7.2 km/h) to M3 (10.3 km/h); while during plow tillage and harrowing, the load of the tractor increased approximately 1.2 times and 1.5 times, respectively.

Analysis of Lateral Earth Pressures on Retaining Wall from Traffic Load Distribution (옹벽 상단 교통하중의 분포에 따른 옹벽의 수평 토압 분석)

  • Lee, Kicheol;Kim, Dongwook;Chung, Moon-Kyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.43-55
    • /
    • 2017
  • The purpose of this study is to investigate the effect of traffic loads on retaining wall stability. There is insufficient research on lateral earth pressure on retaining wall due to traffic load. In addition, limited detailed designs of retaining wall for transportation including number of lanes of road, magnitudes of axle loads, and vehicle formations are available. Because the lateral earth pressure on the retaining wall due to traffic loads is a function of the lateral distance from retaining wall, the wall height, and the locations of lanes, the analysis of lateral load on retaining wall from traffic loads is performed with direct or indirect reflection of these factors. As a result of the analysis, lateral earth loads induced from traffics can be considered negligible if the lateral distance of traffic load from wall exceeds the height of retaining wall. Therefore, it is practically reasonable to consider traffic loads within a lateral distance between wall and traffic load of the height of retaining wall.

Development of Vehicular Load Model using Heavy Truck Weight Distribution (I) - Data Collection and Estimation of Single Truck Weight (중차량중량분포를 이용한 차량하중모형 개발(I) - 자료수집 및 단일차량 최대중량 예측)

  • Hwang, Eui-Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.189-197
    • /
    • 2009
  • In this study, truck weight data and load effects of single truck on bridges are analyzed for development of new vehicular load model of the reliability-based bridge design code. Rational load model and statistical properties of loads are important for developing reliability-based design code. In this study, truck weight data collected at four locations are used as well as data from four locations in other studies. Truck weight data are collected from WIM or BWIM system, which are known to give reliable data. Typical truck types, dimensions and axle weight distribution are determined. Probability distributions of upper 20% total truck weight are assumed as Extreme Type I and 100 years maximum truck weights are estimated by linear regression on the probability paper. The load effects of trucks having estimated maximum weights are analyzed for span length from 10 m to 200 m.

The Impact Loads on the Hitch Point of the Tiller-Trailer System (동력경운기의 경사지 견인 및 주행 특성에 관한 연구(제일보)-동력경운기 -트레일계의 힛치점에 작용하는 충격력-)

  • 송현갑;장창주
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 1977
  • Transporting agricultural products and the other material by the two-wheel-tractor (power-tiler)and trailer system may be one of its most widely used farming functions.The safety and hitching load for all the previaling performing conditions may be the general concern over the operation of the tiller-trailer system. In this study, a mathematical model to determine the static and dynamic forces excerting on the hitch point were developed . Based on the analysis of the model and the field measurements. the limiting hitching load and critical slope were analyzed. The results of the study are summarized as follows ; 1) The limit angle of slope land for the safety steering that two-wheel tractor-single axle trailer system was able to transport agricultural products was the direct angle (${\gamma}$) = 8 ; the cross angle$\beta$) 15 ; and it was decreased in accordance with the increase of carrying load ($W_4). 2) The critical velocity for safe operation in case of running on downward hill road was about 1.08m/sec. 3) The limiting carrying load for the safe steering was W$_4$=600kg. The degree of the safe steering for different braking methods was given in order as follows ; Simulataneous braking the tractor and trailer , braking the trailer only, and braking tractor only. 4) Among the three components of impact loads excerting on the hitch point, the component in the lateral direction ($P_{Vy}$) was near zero in spite of increase of hitching load ($W_4) , while the components in the other two mutually perpedicular directions ($P_{Vx}$ and ($P_{Vz}$) ) had larger values in horizontal plane than those in the slope lands. 5) Moment of forces on the lateral direction (M$y$) had the largest value among the three components of impact moment acting on the hitch point, however all the components were sharply increased in accordance with the increase of hitching loads ($W_4. Three components of the moment were the negative values.

  • PDF

A Basic Study on Vehicle Load Analyzing System for Embedded Road (임베디드 도로를 위한 차량하중 분석시스템 기초연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.127-132
    • /
    • 2011
  • Load managing method on road became necessary since overloaded vehicles occur damage on road facilities and existing systems for preventing this damage still show many problems. Accordingly, efficient managing system for preventing overloaded vehicles could be organized by using the road itself as a scale by applying genetic algorithm to analyze the load and the drive information of vehicles. First of all, accurate analysis of load using the behavior of road itself is needed for solving illegal axle manipulation problems of overloaded vehicles and for installing intelligent embedded load analyzing system. Accordingly in this study, to use the behavior of road, the transformation was measured by installing underground box type indoor model and indoor experiment was held using genetic algorithm and 10% error were checked.

Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data

  • Zhou, Junyong;Shi, Xuefei;Zhang, Liwen;Sun, Zuo
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.169-178
    • /
    • 2019
  • The replacement of damaged components is an important task for long-span bridges. Conventional strategy for component replacement is to close the bridge to traffic, so that the influence of the surrounding environment is reduced to a minimum extent. However, complete traffic interruption would bring substantial economic losses and negative social influence nowadays. This paper investigates traffic control technologies without interruption for component replacement of long-span bridges. A numerical procedure of traffic control technologies is proposed incorporating traffic microsimulation and site-specific data, which is then implemented through a case study of cable replacement of a long-span cable-stayed bridge. Results indicate traffic load effects on the bridge are lower than the design values under current low daily traffic volume, and therefore cable replacement could be conducted without traffic control. However, considering a possible medium or high level of daily traffic volume, traffic load effects of girder bending moment and cable force nearest to the replaced cable become larger than the design level. This indicates a potential risk of failure, and traffic control should be implemented. Parametric studies show that speed control does not decrease but increase the load effects, and flow control using lane closure is not effectual. However, weight control and gap control are very effective to mitigate traffic load effects, and it is recommended to employ a weight control with gross vehicle weight no more than 65 t or/and a gap control with minimum vehicle gap no less than 40 m for the cable replacement of the case bridge.

Evolving live load criteria in bridge design code guidelines - A case study of India based on IRC 6

  • Karthik, P.;Sharma, Shashi Kant;Akbar, M. Abdul
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.43-57
    • /
    • 2022
  • One of the instances which demand structural engineer's greatest attention and upgradation is the changing live load requirement in bridge design code. The challenge increases in developing countries as the pace of infrastructural growth is being catered by the respective country codes with bigger and heavier vehicles to be considered in the design. This paper presents the case study of India where Indian Roads Congress (IRC) codes in its revised version from 2014 to 2017 introduced massive Special vehicle (SV) around 40 m long and weighing 3850 kN to be considered in the design of road bridges. The code does not specify the minimum distance between successive special vehicles unlike other loading classes and hence the consequences of it form the motivation for this study. The effect of SV in comparison with Class 70R, Class AA, Class A, and Class B loading is studied based on the maximum bending moment with moving load applied in Autodesk Robot Structural Analysis. The spans considered in the analysis varied from 10 m to 1991 m corresponding to the span of Akashi Kaikyo Bridge (longest bridge span in the world). A total of 182 analyses for 7 types of vehicles (class B, class A, class 70R tracked, class 70R wheeled, class AA tracked, AA wheeled, and Special vehicle) on 26 different span lengths is carried out. The span corresponding to other vehicles which would equal the bending moment of a single SV is presented along with a comparison relative to Standard Uniformly Distributed Load. Further, the results are presented by introducing a new parameter named Intensity Factor which is proven to relate the effect of axle spacing of vehicle on the normalized bending moment developed.

A Study for Applying Thermoelectric Module in a Bogie Axle Bearing (철도차량 차축 베어링 발열부의 열전발전 적용에 대한 기초연구)

  • Choi, Kyungwho;Kim, Jaehoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • There has been intense research on self-diagnosis systems in railway applications, since stability and reliability have become more and more significant issues. Wired sensors have been widely used in the railway vehicles, but because of the difficulty in their maintenance and accessibility, they ar not considered for self-diagnosis systems. To have a self-monitoring system, wireless data transmission and self-powered sensors are required. For this purpose, a thermoelectric energy harvesting module that can generate electricity from temperature gradient between the bogie axle box and ambient environment was introduced in this work. The temperature gradient was measured under actual operation conditions, and the behavior of the thermoelectric module with an external load resistance and booster circuits was studied. The proposed energy harvesting system can be applied for wireless sensor nodes in railroad vehicles with optimization of thermal management.

A Model for Simplified 3-dimensional Analysis of High-speed Train Vehicle (TGV)-Bridge Interactions (고속철도차량(TGV)-교량 상호작용의 단순화된 3차원 해석모델)

  • 최창근;송명관;양신추
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.165-178
    • /
    • 2000
  • The simplified model for 3-dimensional analysis of vehicle-bridge interactions is presented in this study. By using the analysis model which includes the eccentricity of axle loads and the effect of the torsional forces acting on the bridge, the more accurate analysis results of the behavior of the bridge can be obtained. The equations of kinetic energy, potential energy and damping energy are expressed by degrees of freedom of the vehicle and the bridge. And then by applying Lagrange's equations of motion, the equations of motion of the vehicle and the bridge are obtained. By deriving the equations of forces acting on the bridge considering the vehicle-bridge vertical interactions and also by identifying the position of vehicle as time goes by, mass matrix, stiffness matrix, damping matrix and load vector of vehicle-bridge system are constructed in accordance with the position of vehicles. Then using Newmark's β-method(average acceleration), the equations of motion for the total vehicle bridge system are solved.

  • PDF