• Title/Summary/Keyword: axle detector

Search Result 9, Processing Time 0.025 seconds

Design of Collecting System for Traffic Information using Loop Detector and Piezzo Sensor (루프검지기와 피에조 센서를 이용한 교통정보 수집시스템 설계)

  • Yang, Seung-Hun;Han, Kyong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2956-2958
    • /
    • 2000
  • This paper describes the design of a real time traffic data acquisition system using loop detector and piezzo sensor. Loop detector is the cheapest method to measure the speed and piezzo is used to detect the vehicle axle information. A ISA slot based I/O board is designed for data acquisition and PC process the raw traffic data and transfer the data to the host system. Simulation kit is designed with toy car kits. simulated loop detector and piezzo sensor. The data acquisition system collects up to 10 lane highway traffic data such as vehicle count. speed. length axle count. distance between the axles. The data is processed to generate traffic count, vehicle classification, which are to be used for ITS. The system architecture and simulation data is included and the system will be tested for field operation.

  • PDF

A Study on Efficient Rolling Stock HBD Monitoring Method Using EWMA Technique (EWMA 기법을 적용한 효율적 철도차량 차축온도검지 모니터링 방법 연구)

  • Choi, Seog-Jung;Kim, Moon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.609-617
    • /
    • 2017
  • Railways are one of the safest and most important transportation systems in the world. On the other hand, due to the increasing complexity of the railway system and the running distance of rail vehicles, railway accidents occur continuously every year. In particular, in the case of high-speed trains and freight trains, if the function of the axle bearing is lost due to abnormal overheating of the axle box bearing, the load on the axle becomes uneven. Therefore, abnormal overheating in the train axle box bearings can cause serious accidents or derailments. For this purpose, a Hot Box Detector (HBD) was installed in the track side of a high speed line to detect abnormal overheating. This paper proposes an EWMA technique-based axle temperature monitoring method to detect abnormal overheating quickly and efficiently. A statistical design of the proposed method was also performed. The proposed method has better performance compared to the current method in the case of abnormal overheating and the performance is improved by approximately 170% at the maximum.

Implementation of the Measurement Equipment to Measure Return Current and Axle Temperature of High Speed Railway (고속철도 귀선전류 및 차축 온도 검측을 위한 검측장치 구현)

  • Lee, Young-Soo;Lee, Byeong-Gon;Hwang, In-Kwang;Han, Seung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.695-703
    • /
    • 2016
  • The maintenance method for the electrical facility of high speed railway has been evolved from inspection by personnel to the automated way by the detection devices. In particular, the signalling equipment in order to increase the safe and efficient operation of the trains is required to maintain normal operation by periodic maintenance. Because the return current gives the most important effects to the wayside equipment in case of the failures, a method is needed to measure the unbalanced rate of return current on the train at high speed driving. The Hot Box Detector(HBD) device that is installed at track-side has a function to recognize the abnormal axle box by detecting the temperature that occurs in the axle of train passing over its device. In order to implement the measurement equipment for unbalanced rate of return current and axle temperature, the design method is proposed and the experimental test results by test bed are included in the paper.

A Study of the Apply Proximity Sensor for Improved Reliability Axle Detection (열차 차축검지 신뢰성 향상을 위한 근접센서 방식 Axle Counter 적용 연구)

  • Park, Jae-Young;Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5534-5540
    • /
    • 2015
  • This In the railway signaling system, applications of axle counter in addition to track circuit goes on increasing for detecting train position. Consequently, this paper compares sensor methods of axle counter with between geo-magnetism method and proximity sensor method. And it presents differences and results, to improve reliabilities of train detection and axle counting. Also, this article presents an applied result which is based on field experience, with regard to installation, considering attachment condition of sensor part for accurate axle counting. This study acquires expandability that is able to perform not only axle counting function but also various other functions (direction detection of train, speed detection of train, and so on). It was a result of a change of design in order to judge phase difference of sensors, to improve reliability of axle counting. Furthermore, it does not subordinate to characteristics (type, weight of train). And it is confirmed that the omission of axle counting was not occurred in 350km/h. This was the result of Lab test after the construction of transfer equipment of trial axle and Test Bed for axle counting. Both of them are self-productions. Through this, it prepares foundation which is able to apply not only to train detection but also to speed of passing trains, formation number of trains, detector locking condition - when the train passes the section of switch point, and level crossing devices. Furthermore, it would be judged to contribute safety train operation if proximity sensor method applies to the whole railway signaling system from now on.

Development of PSC I Girder Bridge Weigh-in-Motion System without Axle Detector (축감지기가 없는 PSC I 거더교의 주행중 차량하중분석시스템 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Jungwhee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.673-683
    • /
    • 2008
  • This study improved the existing method of using the longitudinal strain and concept of influence line to develop Bridge Weigh-in-Motion system without axle detector using the dynamic strain of the bridge girders and concrete slab. This paper first describes the considered algorithms of extracting passing vehicle information from the dynamic strain signal measured at the bridge slab, girders, and cross beams. Two different analysis methods of 1) influence line method, and 2) neural network method are considered, and parameter study of measurement locations is also performed. Then the procedures and the results of field tests are described. The field tests are performed to acquire training sets and test sets for neural networks, and also to verify and compare performances of the considered algorithms. Finally, comparison between the results of different algorithms and discussions are followed. For a PSC I-girder bridge, vehicle weight can be calculated within a reasonable error range using the dynamic strain gauge installed on the girders. The passing lane and passing speed of the vehicle can be accurately estimated using the strain signal from the concrete slab. The passing speed and peak duration were added to the input variables to reflect the influence of the dynamic interaction between the bridge and vehicles, and impact of the distance between axles, respectively; thus improving the accuracy of the weight calculation.

Development of Vehicle Classification Method using Discriminant Function Based on Detection of Dual Tire (주행차량의 복륜 여부 판정을 통한 차종분류 방안)

  • Oh, Jusam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.45-51
    • /
    • 2010
  • Traffic volume is essential data for traffic control or maintenance and rehabilitation planning. The volume especially with respect to the type of vehicles can facilitate to those road operations. In this research, a method for vehicle classification was developed using skewed sensors which can generate traffic signatures. In order to characterize vehicle types, the method investigates whether the second axle of each vehicle consists of dual tires. The presence of dual tire is determined by the discriminate function obtained from discriminant analysis. The validation using 1,878 vehicles recorded from a highway using a CCTV camera indicated significantly accurate results: 96.92% for class 1, 82.91% for class 3 and 79.13% for class 4.

Design of Traffic Data Acquisition System with Loop Defector and Piezo-Electric Sensor (루프검지기와 피에조 센서를 이용한 차량정보 수집 시스템 설계)

  • 한경호;양승훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.102-108
    • /
    • 2002
  • This paper handles the design of a real time traffic data acquisition system using loop detector and piezo-electric sensor to acquire the vehicle information EISA compatible parallel I/O interface card is designed to sample 30 I/O channels at variable rates for raw traffic data acquisition. The control software is designed to generate the traffic data informations from the raw data. The traffic data information provides vehicle length, speed, number of axles, etc. Vehicle types are detected and categorized into eleven types from the vehicle length, axles positions and axle counts information. The traffic information is formed into packet and transferred to the remote hosts through serial communications for ITS applications.

Study on the Utilization of HBD in the Conventional Speed-up Lines (일반철도 고속화 구간에서 차축온도검지장치 활용방안에 대한 연구)

  • Choe, Gwon-Hui;Kim, Yu-Ho;Baek, Seung-Mun;Bing, Gun-Seop
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.233-243
    • /
    • 2012
  • HBD(Hot Box Detector) is a device to monitor temperature rises to inappropriate lubricant use or mechanical defects. If a train operates without recognizing such an effect, it might result in bearing overheating due to defects and cause a dangerous situation that it could derail a train owing to the damage of axles. Now for the Gyeongbu HSL at 300km/h, the laws related to monitoring overheated axle bearings are notified in the Railway Safety Law and the Railway Construction Law. But in case of the conventional speed-up lines that a train operates at 180 to 230 km/h, the revised bill of relevant standards is ongoing. Therefore in this paper we present references and reviews investigated in order to use the optimal HBD in the conventional speed-up lines.

  • PDF

Verification of High Speed Performance for the Electronic Pedal using a Rotor (회전체를 이용한 전자페달의 고속 성능 검증)

  • KIM, Yong-Kyu;GO, Jun-Young;YOON, Yong-Ki;KIM, Ju-Yeop;LEE, Jong-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1450-1456
    • /
    • 2016
  • In this paper, we have checked a method of performance evaluation for electronic pedal, which is a core technology of HBD for detecting the axle temperature of high-speed train. As it is practically impossible to conduct train speed test of 500 km/h, we utilize a high speed rotor for evaluating high speed performance of the electronic pedal instead. According to this method, we found that the measurement results by the velocity measuring instrument is similar with the ones from this research through the high speed rotor. In conclusion, it will be possible to conduct reliability evaluation for high speed performance for Beacon, Balise and RFID, which are utilized for transmitting vital information of train control systems through using the rotor.