• Title/Summary/Keyword: axisymmetric model

Search Result 435, Processing Time 0.026 seconds

A 2D FE Model for a Unique Residual Stress in Single Shot Impact (단일 숏 충돌에서의 잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.183-188
    • /
    • 2007
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters include elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peeing factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

  • PDF

Computation of supersonic turbulent base flow using two-equation and Reynolds stress models (2-방정식 및 레이놀즈 응력 모형을 이용한 초음속 난류 기저유동의 수치적 계산)

  • Kim M. H.;Park S. O.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.9-17
    • /
    • 1997
  • The performance of several turbulence models in computing an axisymmetric supersonic base flow is investigated. A compressible Navier-Stokes code, which incorporates k-ε, k-ω model and Reynolds stress closure with three kinds of pressure-strain correlation model, has been developed using implicit LU-SGS algorithm with second-order upwind TVD scheme. Numerical computations have been carried out for Herrin and Dutton's base flow. It is observed that the two-equation models give large backward axial velocity approaching to the base and somewhat larger variation of base pressure distribution than the Reynolds stress model. It is also found that the Reynolds stress model with third order pressure-strain model in the anisotropy tensor predicts most accurate mean flow field.

  • PDF

Dynamic Analysis of Axisymmetric Prestressed Shell Structures Subjected to Seismic Excitations (지진하중을 받는 축대칭 프리스트레스트 쉘 구조물의 동적해석)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.11-22
    • /
    • 1998
  • An axisymmetric shell element which includes the effects of the meridional and circumferential cable prestresses is developed. It is coded for personal computer by the maximum use of axisymmetic properties and the dynamic analysis is performed under the seismic exitations. A ring element is used to fully utilize the characteristics of the axisymmetric shell. The eigenvalue solutions using 20 elements under the initial prestresses are in good agreement with the exact solutions. The results of the seismic analysis show that the radial deflection under the meridional prestress is a little larger than that under the circumferential prestress. The finite element model developed in this study can be very useful to the design applications.

  • PDF

Numerical Computation of Dynamic Stress Intensity Factors in Axisymmetric Problems (축대칭 문제에서의 동적 응력확대계수의 계산)

  • 이성희;심우진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • In this paper, the finite element method for the elastodynamic axisymmetric fracture analysis is presented in matrix form through the application of the Galerkin method to the time integral equations of motion with no inertia forces. Isoparametric quadratic quadrilateral element and triangular crack tip singular elements with one-quarter node are used in the mesh division of the finite element model. To show the validity and accuracy of the proposed method, the infinite elastic medium with the penny shaped crack is solved first and compared with the analytical solution and the numerical results by the finite difference method and the boundary element method existing in the published literatures, and then the dynamic stress intensity factors of solid and hollow cylinders of finite dimensions haying penny-shaped cracks and internal and external circumferential tracks are computed in detail.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to the Dynamic Response Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(II) -축대칭 쉘의 동적 응답 해석을 중심으로 -)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.74-84
    • /
    • 1996
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. For developing a program to analyze the dynamic response of an axisymmetric shell in this study, the material nonlinearity effect on the dynamic response was formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion was numerically solved by a central difference scheme. A complete finite element program has been developed and the results obtained by it are compared with those in the references 1 and 2. The results are in good agreement with each other. As a case study of its application, the developed program was applied to a dynamic response analysis of a nuclear reinforced concrete containment structure. The results obtained from the' numerical examples are summarized as follows : 1. The dynamic magnification factor of the displacement and the stress were unrelated with the concrete strength. 2. As shown by the results that the displacement dynamic magnification factor were form 1.7 to 2.3 and the stress dynamic magnification factor from 1.8 to 2.5, the dynamic magnification factor of stress were larger than that of displacement. 3. The dynamic magnification factor of stress on the exterior surface was larger than that on the interior surface of the structure.

  • PDF

Grain Growth Revealed by Multi-wavelength Analysis of Non-axisymmetric Substructures in the Protostellar Disk WL 17

  • Han, Ilseung;Kwon, Woojin;Aso, Yusuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2020
  • Disks around protostars are the birthplace of planets. The first step toward planet formation is grain growth from ㎛-sized grains to mm/cm-sized grains in a disk, particularly in dense regions. In order to study whether grains grow and segregate at the protostellar stage, we investigate the ALMA Band 3 (3.1 mm) and 7 (0.87 mm) dust continuum observations of the protostellar disk WL 17 in ρ Ophiuchus L1688 cloud. As reported in a previous study, the Band 3 image shows substructures: a narrow ring and a large central hole. On the other hand, the Band 7 image shows different substructures: a non-axisymmetric ring and an off-center hole. The two-band observations provide a mean spectral index of 2.3, which suggests the presence of mm/cm-sized large grains. Its non-axisymmetric distribution may imply dust segregation between small and large grains. We perform radiative transfer modeling to examine the size and spatial distributions of dust grains in the WL 17 disk. The best-fit model suggests that large grains (>1 cm) exist in the disk, settling down toward the midplane, whereas small grains (~10 ㎛) well mixed with gas are distributed off-center and non-axisymmetrically in a thick layer. The low spectral index and the modeling results suggest that grains rapidly grow at the protostellar stage and that grains differently distribute depending on sizes, resulting in substructures varying with observed wavelengths. To understand the differential grain distributions and substructures, we discuss the effects of the protoplanet(s) expected inside the large hole and the possibility of gravitational instability.

  • PDF

A Study on Size Optimization for Rocket Motor with a Torispherical Dome (토리구형 돔 형상을 갖는 연소관의 치수 최적화 설계 연구)

  • Choi, Young-Gwi;Shin, Kwang-Bok;Kim, Won-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.567-573
    • /
    • 2010
  • In this study, we evaluated the structural integrity and weight of a rocket motor with a torispherical dome by size optimization. Size optimization was achieved by first-order and sub-problem methods, using the Ansys Parametric Design Language (APDL). For rapid design verification, a modified 2D axisymmetric finite-element model was used, and the bolt pre-tension load was expressed as function of the ratio of the cross-sectional area. The thickness of the dome and the cylindrical part of the rocket motor were selected as the design parameters. Our results showed that the weight and structural integrity of the rocket motor at the initial design stage could be determined more rapidly and accurately with the modified 2D axisymmetric finite-element model than with the 3D finite-element model; further, the weight of the rocket motor could be saved to maximum of 17.6% within safety limit.

The Effects of Volume Ratio and Shape on the Formation of Adiabatic Shear Band in WHA (텅스텐 중합금의 부피분율, 입자형상에 따른 단열전단밴드 형성 연구)

  • 이승우;송흥섭;문갑태
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.682-690
    • /
    • 2002
  • The formation of adiabatic shearband in tungsten heavy alloys(WHA) was studied in this investigation. Five prismatic specimens were loaded by high velocity impacts and treated as plane strain problems. To find out the effect of particle's volume ratio, specimens containing 81%, 93% and 97% volume percents of tungsten particles were used. Also the effects of particle's geometry and size on the formation of shearband were studied for 81% volume percent alloys by small size particle model, large size particle model and undulated particle models, and the results were discussed.be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, or incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

A STUDY ON THE STRESS ANALYSIS OF THREE ROOT-FORM IMPLANTS WITH FNITE ELEMENT ANALYSIS (유한요소분석법을 이용한 치근형 임플랜트의 응력분포에 관한 연구)

  • Moon, Byoung-Hwa;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.1
    • /
    • pp.129-150
    • /
    • 1993
  • Since the restoration or masticatory function is the most important aim of implants, it should be substituted for the role of natural teeth and deliver the stress to the bone under the continous load during function. In natural teeth, stress distribution can be obtained through enamel, dentin and cementum and the elasticity of the periodontal ligament play a role of buffering action. In contrast, implant prosthesis has a very unique characteristics that it delvers the load directly to bone through the implant and superstructure. This fact arise the needs to evaluate the stress distribution of the implant in the mechnical aspects, which has a similar role of natural teeth but different pathway of stress. With 3 kinds of implant in prevalent use, 2 types of experimental PEA implant models were made, axisymmetric and 2-dimensional type. In axisymmetric model, the stiffness of the part including the prosthesis and implant which extrude out of bony surface could be calculated with displacement of the superstructure un er 100N vertical load and then damping effects could be determined through this stiffness. In axisymmetric FEA model, load to the bone could be deduced by evaluation the stress distribution of the designed surface under the 100N vertical force and in 2-dimensional model, 100N eccentric vertical load and 20N horizontal loda. The result are as follows. 1. In every implant, stress to the bone tends to be concenturated on the cortical bone. 2. Though the stress of the cancellous bone is larger at the apex of implants, it is less compared with cortical bone. 3. Under 20N horizontal load, stress of the left and right sides of implant shows a symmetrical pattern. But under 100N eccentric vertical load, loaded side shows much larger stress value. 4. In the 1mm interface, stress distribution among implants tend to have a similar pattern. But under 20N horizontal load apposite side of being loaded shows less stress in IMZ. 5. In the case of screw type implant, stress tends to vary along with screw shape. 6. According to the result determined with microstrain, cancellous bone id generally under the condition of overload, while cortical bone is usually within the limitation of physiologic load. 7. In the Branemark implant, maximum stress to the cortical bone is larger than any other implant except for the condition of 20N horizontal force and 0.05mm interface. 8. Damping effects of implants is maximum in IMZ.

  • PDF

MULTI-HARMONIC MODELS FOR BUBBLE EVOLUTION IN THE RAYLEIGH-TAYLOR INSTABILITY

  • Choi, Sujin;Sohn, Sung-Ik
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.663-673
    • /
    • 2017
  • We consider the multi-harmonic model for the bubble evolution in the Rayleigh-Taylor instability in two and three dimensions. We extend the multi-harmonic model in two dimensions to a high-order and present a new class of steady-state solutions of the bubble motion. The growth rate of the bubble is expressed by a continuous family of two free parameters. The critical point in the family of solutions is identified as a saddle point and is chosen as the physically significant solution. We also present the multi-harmonic model in the cylindrical geometry and find the steady-state solution of the axisymmetric bubble. Validity and limitation of the model are also discussed.