• Title/Summary/Keyword: axial tension

Search Result 302, Processing Time 0.023 seconds

Collapse Prevention Method of Long-span Plastic Greenhouse for Heavy Snow (장스팬 비닐하우스의 폭설에 의한 붕괴방지법 연구)

  • Kim, Bo-Kyung;Lee, Swoo-Heon;Kim, Jin-Wook;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2010
  • The cases of collapse of greenhouses in rural areas have been increasing due to the unexpected heavy snow load. Studies on how to prevent the collapse of greenhouses are rare, however, and the damages are repeated annually. This studysuggests two reinforcing methods: the use of ahigh-strength tapered module, and the addition of a pre-tension tie. The high-strength tapered section is installed where the bending moment is maximum. The design of a plastic greenhouse is controlled by its strength rather than its deflection. The shape of a greenhouse resembles that of an arch system, but its actual structural behavior is the frame behavior, because it is non-continually composed of a curved element (a beam) and vertical elements (columns). This system is too weak and slender to resist a vertical load, because an external load is resisted by the moment rather than by axial force. In this study, a new method, the installation of a temporary tie at the junction of the arch and the column only during snow accumulation, is proposed. The tie changes the action of the greenhouse frame to an arch action. The arch action is more effective when the pre-tension force is applied in the tie, which results in a very strong temporary structural system during snowfall. As a result of using this high-strength tapered section, the combined strength ratio of what? decreased from 10% to 30%. In the case of the additional reinforcement with a tie, it was reduced by half.

The Estimation and Comparison of Flexural Crack Width Considering Bonding Characteristics in Reinforced Concrete Members (부착특성을 고려한 철근콘크리트 부재의 휨 균열폭 산정 및 비교)

  • Ko, Won-Jun;Min, Byung-Chul;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.579-588
    • /
    • 2006
  • In recent years, the availability of high-strength reinforcing and prestressing steels leads us to build economically and efficiently designed concrete structural members. One of critical problems faced to the structural engineers dealing with these types of structural member is controls of crack width that is used as a criterion for the serviceability in the limit state design. Especially, flexural cracking must be controlled to secure the structural safety and to improve the durability as well as serviceability of the load carving members. The proposed method utilizes the results of pure tension test in which tensile loads are applied both side of specimen, done by Ikki. The bond characteristics of deformed reinforcing bar under pure tension is considered by the area of concrete and rib area. The results of proposed method are compared with the test data and the results show that the proposed method can take into account the dimensions, variation of sectional properties, and direction of reinforcing and gives more accurate maximum bond stress and corresponding relative slip than the existing methods. the characteristics of bonding is considered by using dimensionless slip magnitude and effective reinforcement ratio. The validity of the proposed equation is verified by test experimental data.

Experimental Study on Fatigue Characteristics of the Single Spot Welded Joint (점용접재(点熔接材)의 피로(疲勞) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Chang-Min Suh;Sung-Soo Kang;Nam-Seong Hwang;Yong-Ich Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.214-226
    • /
    • 1992
  • In this paper, the characteristics of fatigue crack growth in the spot welded joint of the same kinds of specimens($HS{\times}HS,\;GA{\times}GAB$) and different kinds of specimens($HS{\times}GA,\;HS{\times}GAB$) which consist of dual phase high strength steel(HS) and monogalvanized steel(GA) were examined with static tension tests and axial tension fatigue tests. Some of the important results are as follows : 1. The divergence of tensile strengths among the same and different kinds of spot welds under the same conditions is comparatively low regardless of the difference of stiffness. 2. At the low load bevel and long life legion, the fatigue crack is initiated near the nugget. However, in the high load level and short life region, it occurs a tittle far from the nugget. 3. It has shown a linear relation between maximum stress Intensity factor, Kmax and fatigue life, $N_f$ among each of the spot welds and has gathered in a narrow band on the log-log graph paper. $Kmax=H{\cdot}{N_f}^{P}$ where H and P are a material constant.

  • PDF

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

Load-Displacement Relationship of Passive Vibration Units Composed with a Spring and Vibration-Proof Rubbers (스프링과 방진고무가 융합된 제진장치의 하중-변위 관계)

  • Mun, Ju-Hyun;Im, Chae-Rim;Wang, Hye-Rin;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.226-234
    • /
    • 2021
  • The objective of this study is to establish the fundamental design data for axial load-displacement relationship under axial monotonic or cyclic responses of seismic damping·isolation (SDI) units developed for ceiling structures. The main parameters include the installation of a spring, the number of rubber layer, prestress stress of bolts for connector between the spring and rubbers, and loading type. Test results showed that SDI units with a spring in the core and higher prestress stress of bolts tended to be higher stiffness at the ascending branch and more ductile behavior at the descending branch. This trends more notable for the specimens under monotonic load rather than cyclic loads. Consequently, the energy dissipation of SDI unit can be optimally designed with the following conditions: installation of a spring within 3-layer rubbers and prestress applied to the bolts at 10% of their yielding strength . When compared with the experimental tension capacity of the developed SDI units, the predictions by JIS B 2704-1 and KDS 31 00 are conservative under monotonic loading but higher by approximately 10% under cyclic loading.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Seismic Design of Columns in Inverted V-braced Steel Frames Considering Brace Buckling (가새좌굴을 고려한 역 V형 가새골조의 기둥부재 내진설계법)

  • Cho, Chun-Hee;Kim, Jung-Jae;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • According to the capacity design concept which forms the basis of the current steel seismic codes, the braces in concentrically braced frames (CBFs) should dissipate seismic energy through cyclic tension yielding and cyclic compression buckling while the beams and the columns should remain elastic. Brace buckling in inverted V-braced frames induces unbalanced vertical forces which, in turn, impose the additional beam moments and column axial forces. However, due to difficulty in predicting the location of buckling stories, the most conservative approach implied in the design code is to estimate the column axial forces by adding all the unbalanced vertical forces in the upper stories. One alternative approach, less conservative and recommended by the current code, is to estimate the column axial forces based on the amplified seismic load expected at the mechanism-level response. Both are either too conservative or lacking technical foundation. In this paper, three combination rules for a rational estimation of the column axial forces were proposed. The idea central to the three methods is to detect the stories of high buckling potential based on pushover analysis and dynamic behavior. The unbalanced vertical forces in the stories detected as high buckling potential are summed in a linear manner while those in other stories are combined by following the SRSS(square root of sum of squares) rule. The accuracy and design advantage of the three methods were validated by comparing extensive inelastic dynamic analysis results. The mode-shape based method(MSBM), which is both simple and accurate, is recommended as the method of choice for practicing engineers among the three.

Where is the coronal loop plasma located, within a flux rope or between flux ropes?

  • Lim, Daye;Choe, G.S.;Yi, Sibaek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.3-67
    • /
    • 2015
  • Without scrutinizing reflection, the plasma comprising a coronal loop is usually regarded to reside within a flux rope. This picture seems to have been adopted from laboratory plasma pinches, in which a plasma of high density and pressure is confined in the vicinity of the flux rope axis by magnetic tension and magnetic pressure of the concave inward magnetic field. Such a configuration, in which the plasma pressure gradient and the field line curvature vector are almost parallel, however, is known to be vulnerable to ballooning instabilities (to which belong interchange instabilities as a subset). In coronal loops, however, ideal MHD (magnetohydrodynamic) ballooning instabilities are impeded by a very small field line curvature and the line-tying condition. We, therefore, focus on non-ideal (resistive) effects in this study. The footpoints of coronal loops are constantly under random motions of convective scales, which twist individual loop strands quite randomly. The loop strands with the axial current of the same direction tend to coalesce by magnetic reconnection. In this reconnection process, the plasma in the loop system is redistributed in such a way that a smaller potential energy of the system is attained. We have performed numerical MHD simulations to investigate the plasma redistribution in coalescence of many small flux ropes. Our results clearly show that the redistributed plasma is more accumulated between flux ropes rather than near the magnetic axes of flux ropes. The Joule heating, however, creates a different temperature distribution than the density distribution. Our study may give a hint of which part of magnetic field we are looking to in an observation.

  • PDF

Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads (원주방향 부분 관통 균열이 존재하는 직관에 인장하중과 열하중의 복합하중이 가해지는 경우의 균열 선단 응력장)

  • Je, Jin Ho;Kim, Dong Jun;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1207-1214
    • /
    • 2014
  • Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints. This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF