• 제목/요약/키워드: axial ratio

검색결과 1,539건 처리시간 0.027초

풍력발전 타워용 종방향 보강 원형단면 강재 쉘의 극한압축강도 (Ultimate Axial Strength of Longitudinally Stiffened Cylindrical Steel Shell for Wind Turbine Tower)

  • 안준태;신동구
    • 한국강구조학회 논문집
    • /
    • 제29권2호
    • /
    • pp.123-134
    • /
    • 2017
  • 풍력발전 타워용 종방향 보강 원형단면 강재 쉘에 대하여 재료 및 기하학적 비선형 유한요소법(GMNIA)으로 극한압축강도 해석을 수행하였다. 보강 쉘의 반경 대 두께비, 초기변형 형상 및 진폭, 종방향보강재의 면적 및 간격 등의 주요 설계 파라미터가 압축력을 받는 보강 쉘의 극한강도에 미치는 영향을 분석하였으며, DNV 설계기준에 의한 설계좌굴강도와 유한요소해석으로 구한 극한압축강도를 비교하였다. 기하학적 초기결함의 형상은 선형 좌굴해석으로부터 구한 좌굴모드 및 제작 과정에서 용접으로 발생하는 딤플 변형을 고려하였다. 해석 대상 보강 쉘의 반경 대 두께비는 50~200이며, 종방향보강재는 횡비틀림좌굴과 국부좌굴이 발생하지 않도록 DNV 설계기준에 따라 두께와 돌출폭을 결정하였다.

저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구 (A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF

조합하중을 받는 해양구조물 원통부재의 최동강도 해석 (Utimate strength analysis of cylindrical members of offshore structure subject to combined loads)

  • 박치모
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.11-17
    • /
    • 1997
  • Simple and efficient way of nonlinear analysis considering elasto-plastic large deformation is introduced to calculate the strength of ring-stiffened cylinears subject to combined load of axial compression and lateral pressure. Parametric study gives various collapse modes according to the combination ratio of axial compression and lateral pressure, interaction between axial compression and lateral pressure and imperfection sensitivity of ultimate strength.

  • PDF

Experimental Study on Axial Stratification Process and Its Effects (I) - Stratification in Engine -

  • Ohm, In-Yong;Park, Chan-Jun
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1457-1469
    • /
    • 2002
  • This paper is the first of several companion papers, which investigate axial stratification process and its effects in an Sl engine. The axial stratification is very sophisticate phenomenon, which results from combination of fuel injection, port and in-cylinder flow and mixing. Because of the inherent unsteady condition in the reciprocating engine, it Is impossible to understand the mechanism through the analytical method. In this paper, the ports were characterized by swir and tumble number in steady flow bench test. After this, lean misfire limit of the engines, which had different port characteristic, were investigated as a function of swirl ratio and injection timing for confirming the existence of stratification. In addition, gas fuel was used for verifying whether this phenomenon depends on bulk air motion of cylinder or on evaporation of fuel. High-speed gas sampling and analysis was also performed to estimate stratification charging effect. The results show that the AFR at the spark plug and LML are very closely related and the AFR is the results of bulk air motion.

헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계 (Design of Two Stage Axial Compressor of a Turbo Shaft Engine for Helicopters)

  • 김진한;김춘택;이대성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.183-190
    • /
    • 1998
  • This paper introduces the part of efforts to develop a derivative type turbo-shaft engine from an existing baseline engine for multi-purpose helicopters targeting at 4000kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power to 840hp from 720hp with minimum modification, two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, two stage axial compressors were designed to have the flow rate of 3.04 kg/s, the pressure ratio of 2.01 and the adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

PVA섬유를 사용한 고인성 시멘트 복합체 기둥의 압축거동 (Axial Behavior of High Performance Fiber Reinforced Cementitious Composite Columns with PVA Fibers)

  • 변장배;전수만;전에스더;김선우;황선경;윤현도;임병훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.29-32
    • /
    • 2005
  • An experimental investigation on the strength and behavior of High Performance Fiber Reinforced Cement Composite(HPFRCC) column with Polyvinyl alcohol(PVA) fibers under axial load have been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of PVA, and the volumetric ratio of transverse reinforcement. Test results showed that the fibers, when used in PVA2.0, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

정방향 STRC 기둥의 자기이력현상 거동 (Hysteretic Behavior of Reinforced Concrete Columns Confined By Square Steel Tubes.)

  • 왕소용;장수메이;이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.430-433
    • /
    • 2006
  • The reinforced concrete column confined by square steel tubes(RCST) is a reinforced column (RC) confined by thin steel tubes which cover over the full length of the column but terminates 15mm from the column's ends. The steel tube is in uniaxial tension stress state and won't buckle when the column sustains axial load. This will highly increase the bearing capacity and ductility of the columns. The hysteretic behavior of four square RCST columns and one square RC column were experimentally studied under constant axial load and lateral cyclic load. The wide-to-thickness (D/t) ratio of RCST columns employed in this research is 75. The main variables of the experiment were axial load ratio and compressive strength of the concrete. Based on the findings in this research, RCST columns exhibits high lateral strength, ductility, and energy dissipation ability.

  • PDF

축류압축기 블레이드의 표면조도가 성능에 미치는 영향 (Effect of Surface Roughness on Performance of Axial Compressor Blade)

  • 압두스사마드;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권3호
    • /
    • pp.9-16
    • /
    • 2007
  • Deterioration of surface of turbomachinery blades occurs in course of time due to many factors and hence reduces the performance of the machine. In this paper, the effects of surface roughness of transonic axial compressor blade on performance are studied considering a reference blade and a shape distorted (optimized) blade. Optimal blade is designed considering sweep and lean. Baldwin-Lomax turbulence model is used for flow field analysis and Cebeci-Smith roughness model is formulated for roughness modeling. It is found that, as the surface roughness increases, adiabatic efficiency, total temperature ratio and total pressure ratio decrease while Mach number increases. Performance deterioration is more severe in case of distorted blade as compared to reference blade.

케이싱 그루브가 존재하는 축류압축기의 성능특성 연구 (A Study on Performance Characteristics of an Axial Compressor with the Casing Groove)

  • 최광진;김진혁;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.24-29
    • /
    • 2010
  • This paper presents a study on the performance of NASA Rotor 37 with the casing grooves based on three-dimensional numerical analysis. Reynolds-averaged Navier-Stokes equations are solved on a hexahedral grid with the shear stress transport model as a turbulence closure model. The governing equations are discretized by a finite volume method. The validation of the numerical results is performed through experimental data for the total pressure ratio and the adiabatic efficiency. The investigation for an axial compressor with a smooth casing and the casing grooves is carried out to compare the performance parameters, for example, surge margin and efficiency, etc. The surge margin is improved in the case of the casing grooves while remarkable improvement of the efficiency is not produced. The result shows that the casing groove is beneficial to expand the operating range of NASA Rotor 37.

단축적방법을 이용한 다단 축류압축기의 설계 (A Design Procedure for a Multi-Stage Axial Compressor Using the Stage-Stacking Method)

  • 강동진
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1598-1603
    • /
    • 1994
  • A preliminary design procedure for a multi-stage axial compressor is developed, which is based on the stage-stacking method. It determines the flow coefficient which gives rise to the design conditions required such as pressure ratio, mass flow rate and rotational speed for a given specific mass flow rate at inlet to a compressor. With this flow coefficient, blade radii, every stage and compressor performance characterics such as stage pressure ratio, adiabatic efficiency etc. are calculated by stacking each stage performance characteristics. It is shown that there is an optimum number of stage which results in the maximum of compressor overall efficiency for a given specific mass flow rate at inlet to a compressor. A test design was tried for three different geometric design constraints, and comparison with a previous study shows that present procedure could be used reliably in determining the number of compressor stage in preliminary design stage.