• Title/Summary/Keyword: axial loading

Search Result 1,023, Processing Time 0.031 seconds

Long-term Behavior of Reinforced Concrete Wall under Axial Loading (축하중을 받는 철근콘크리트 벽체의 장기거동에 관한 연구)

  • Kwon, Seung-Hee;Kim, Yun-Yong;Kim, Jin-Keun;Park, Yon-Dong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.339-346
    • /
    • 2006
  • The purpose of this study is to suggest a method to quantitatively predict long-term deformation of walls under an axial load concentrated to a part of the whole width. Four wall specimens were tested and three-dimensional finite element analyses were performed for these specimens. The finite element models established in this study were verified from the test results. On the basis of this verification, analysis parameters were selected considering various dimensions of walls and sectional area that a concentrated load is acting on, and finite element analyses for these parameters were carried out. The concept of the effective width coefficient was newly introduced as a method to predict the long-term behavior of walls, and a function that is able to optimally fit the effective width coefficients calculated from the analysis results for the selected parameters was found from regression analysis. The found function can be conveniently used in practice to predict the long-term behavior under loads concentrated to a local area of the whole width of walls.

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.

Prediction of Fatigue life of Composite Laminates using Micromechanics of Failure (미시역학적 파손이론을 이용한 복합재 적층판의 피로수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Many tests are required to predict the fatigue life of composite laminates made of various materials and having different layup sequences. Aiming at reducing the number of tests, a methodology was presented in this paper to predict fatigue life of composite laminates based on fatigue life prediction of constituents, i.e. the fiber, matrix and interface, using micromechanics of failure. For matrix, the equivalent stress model which is generally used for isotropic materials was employed to take care of multi-axial fatigue loading. For fiber, a maximum stress model considering only stress along fiber direction was used. The critical plane model was introduced for the interface of the fiber and matrix, but fatigue life prediction was ignored for the interface since the interface fatigue strength was presumed high enough. The modified Goodman equation was utilized to take into account the mean stress effect. To check the validity of the theory, the fatigue life of three different GFRP laminates, UDT[$90^{\circ}2$], BX[${\pm}45^{\circ}$]S and TX[$0^{\circ}/{\pm}45^{\circ}$]S was examined experimentally. The comparison between predictions and test measurements showed good agreement.

Evaluation of Fire Resistance of Unprotected Concrete-filled Rectangular Steel Tubular Columns under Axial Loading (재하가열시험에 의한 무내화피복 콘크리트충전 각형강관기둥의 내화성능평가)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.323-334
    • /
    • 2014
  • In this paper, experimental program and associated numerical study were carried out to evaluate the fire resistance of unprotected concrete-filled rectangular steel tubular (CFT) columns subjected to the standard fire. The key testing parameters included the length effect, the load ratio, and the sectional dimensions of the CFT columns. Temperature distribution and axial deformation of the CFT column specimens were measured and analyzed. Rather early local buckling of steel tubes was observed in all the specimens. This caused subsequent load transfer from steel tube to concrete, and eventually triggered concrete crushing, or complete loss of the load bearing capacity of the column. This implies that the limit state of local buckling as well as overall flexural buckling should be incorporated in fire design procedure. As expected, the fire resistance time of specimen with higher load ratio consistently lessened. The prediction of fire resistance time of unprotected CFT columns based on the limiting steel temperature in current design codes or the formula proposed by previous studies is slightly conservative compared to the fire test results available. To establish the finite element analysis model that can be used to predict the thermal and structural behaviour of unprotected CFT columns in fire, the fully coupled thermal-stress analysis was also tried by using the commercial code ABAQUS. The numerical results showed a reasonable global correlation with the experimental results.

Analysis of Piled Raft Interactions on Clay with Centrifuge Test (원심모형실험을 통한 점토지반에서의 말뚝지지 전면기초 상호작용)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.57-67
    • /
    • 2012
  • In the design for piled rafts, the load capacity of the raft is in general ignored and the load capacities of pile are only considered for the estimation of the total load carrying capacity of the piled raft. The axial resistance of piled raft is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, acts as a key element in the design for piled rafts. In this study, a series of centrifuge model tests has been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) at the stiff and soft clays. From the test results, it is observed that the interactions of piles, soil, and raft has little influences on the load capacities of piles and raft in piled rafts compared with the load capacities of group piles and raft at the same clay soil condition.

A Study on the Buckling Stability due to Lateral Impact of Gas Pipe Installed on the Sea-bed (해저면에 설치된 가스관의 외부충격에 의한 좌굴 안전성 검토)

  • Park, Joo-Shin;Yi, Myung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.414-421
    • /
    • 2022
  • Subsea oil and gas exploration is increasingly moving into deeper water depths, and typically, subsea pipelines operate under high pressure and temperature conditions. Owing to the difference in these components, the axial force in the pipe is accumulated. When a pipeline is operated at a high internal pressure and temperature, it will attempt to expand and contract for differential temperature changes. Typically, the line is not free to move because of the plane strain constraints in the longitudinal direction and soil friction effects. For a positive differential temperature, it will be subjected to an axial compressive load, and when this load reaches a certain critical value, the pipe may experience vertical (upheaval buckling) or lateral (snaking buckling) movements that can jeopardize the structural integrity of the pipeline. In these circumstances, the pipeline behavior should be evaluated to ensure the pipeline structural integrity during operation in those demanding loading conditions. Performing this analysis, the correct mitigation measures for thermal buckling can be considered either by accepting bar buckling but preventing the development of excessive bending moment or by preventing any occurrence of bending.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

The compressive fracture strength of ceromer crown by the difference of occlusal thickness (Ceromer crown의 교합면 두께에 따른 압축 파절 강도의 비교)

  • Kim, Jee-Yeon;Park, Ha-Ok;Yang, Hong-So
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.205-215
    • /
    • 2002
  • This study investigated the compressive fracture strength of Targis ceromer crown by the difference of occlusal thickness on a maxillary first premolar. Control group was a castable IPS-Empress all-ceramic crown with occlusal thickness of 1.5 mm constructed by layered technique. Experimental groups were Targis crowns having different occlusal thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, respectively. The classification of Targis group is T10, T15, T20, T25 and T15N (for no-thermocycling and occlusal thickness of 1.5mm). Ten samples were tested per each group. Except occlusal thickness, all dimension of metal die is same with axial inclination of $10^{\circ}$and marginal width 0.8mm chamfer. All crowns were cemented with Panavia F and thermocycled 1,000 times between $5^{\circ}$ and $55^{\circ}$ water bath with 10 sec dwelling time and 10 sec resting time. The compressive fracture strength was measured by universal testing machine. The results were as follows : 1. Fracture strength was increased as the occlusal thickness increased : compressive fracture strength of Group T10, T15, T20, T25 was $66.65{\pm}4.88kgf$, $75.04{\pm}3.01kgf$, $87.07{\pm}7.06kgf$ and $105.03{\pm}10.56kgf$, respectively. 2. When comparing material, Targis crown had higher fracture strength than IPS-Empress crown : the mean compressive strength of group T15 was $75.04{\pm}3.01kgf$ and the value of group Control was $37.66{\pm}4.28kgf$. 3. Fracture strength was decreased by thermocycling : the compressive fracture strength of T15 was $75.04{\pm}3.01kgf$, which is lower than $90.69{\pm}6.88kgf$ of group T15N. 4. The fracture line of crowns began at the loading point and extended along long axis of tooth. IPS-Empress showed adhesive failure pattern whereas Targis had adhesive and cohesive failure. In the SEM view, stress was distributed radially from loading point and the crack line was more prominent on Targis crown.

Low Frequency Squeal Noise Reduction using Mode Participation Factor in Complex Eigenvalue Analysis (복소고유치해석에서 모드기여도 인자를 이용한 저주파 스퀼소음 저감)

  • Park, Jeong Min;Kim, Hyun Soo;Yoon, Moon Young;Boo, Kwang Seok;Kim, Heung Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.325-331
    • /
    • 2013
  • In this study, a complex eigenvalue analysis is implemented to verify the unstable mode of a brake system using ABAQUS software. The component participation factors and component modal participation factors are used to analyze the total contributions from each component and each component mode to a particular unstable system mode. This study shows that the 1.4-kHz unstable system mode comes from mode coupling between the 2nd nodal diametric mode and 3rd lateral axial mode (LAM) in the baseline model. A sensitivity analysis with a linking index is performed to prevent the mode coupling of the component modes. This linking index analysis shows the optimum mass loading position to move away the natural frequency of the 3rd LAM, which contributes to the unstable mode. Finally, a complex eigenvalue analysis is implemented with mass loading in the tie bar position, and no unstable system mode is generated in the low-frequency range (below 2 kHz).

FINITE ELEMENT STRESS ANALYSIS OF MAXILLARY TWO IMPLANTS-RETAINED OVERDENTURE ACCORDING TO POSITION OF IMPLANT FIXTURES (상악피개의치를 위한 임플랜트의 위치에 따른 응력분포에 대한 유한요소분석)

  • Ha, Heon-Seok;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.193-200
    • /
    • 2008
  • Statement of problem: There have been a few studies about unsplinted implant retainted maxillary overdenture. Purpose: The purpose of this study was to examine the effect of different position of implant for 2 implants-retained maxillary overdenture. Materials and methods: Three-dimensional finite element models were used to reproduce an edentulous human maxilla with an implant-retained overdenture. Two implants in the canine tooth positions on both side and in the second premolar tooth positions on both side models were examined. Axial loads of 100 N were applied to the occlusal surface at the right first molar tooth positions. Maximum stress at the implant-bone interface and stress at the cortical bone surface just under the loading point were observed. Results and conclusion: Within the limits of this study, maximum stresses were concentrated around implant of canine position at loading side. The second premolar area was thought to be more favorable to distribution of stress on mucosa, alveolar bone and implants than canine area for maxillary overdenture.