• 제목/요약/키워드: axial force effect

검색결과 393건 처리시간 0.035초

A curvature method for beam-column with different materials and arbitrary cross-section shapes

  • Song, Xiaobin
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.147-161
    • /
    • 2012
  • This paper presents a curvature method for analysis of beam-columns with different materials and arbitrary cross-section shapes and subjected to combined biaxial moments and axial load. Both material and geometric nonlinearities (the p-delta effect in this case) were incorporated. The proposed method considers biaxial curvatures and uniform normal strains of discrete cross-sections of beam-columns as basic unknowns, and seeks for a solution of the column deflection curve that satisfies force equilibrium conditions. A piecewise representation of the beam-column deflection curve is constructed based on the curvatures and angles of rotation of the segmented cross-sections. The resulting bending moments were evaluated based on the deformed column shape and the axial load. The moment curvature relationship and the beam-column deflection calculation are presented in matrix form and the Newton-Raphson method is employed to ensure fast and stable convergence. Comparison with results of analytic solutions and eccentric compression tests of wood beam-columns implies that this method is reliable and effective for beam-columns subjected to eccentric compression load, lateral bracings and complex boundary conditions.

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.

Torsional strength model of reinforced concrete members subjected to combined loads

  • Ju, Hyunjin;Lee, Deuckhang;Zhang, Wei;Wang, Lei
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.285-301
    • /
    • 2022
  • This study aims at developing a torsional strength model based on a nonlinear analysis method presented in the previous studies. To this end, flexural neutral axis depth of a reinforced concrete section and effective thickness of an idealized thin-walled tube were formulated based on reasonable approximations. In addition, various sectional force components, such as shear, flexure, axial compression, and torsional moment, were considered in estimating torsional strength by addressing a simple and linear strain profile. Existing test results were collected from literature for verifications by comparing with those estimated from the proposed model. On this basis, it can be confirmed that the proposed model can evaluate the torsional strength of RC members subjected to combined loads with a good level of accuracy, and it also well captured inter-related mechanisms between shear, bending moment, axial compression, and torsion.

Geometrically nonlinear analysis of plane frames composed of flexibly connected members

  • Gorgun, H.
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.277-309
    • /
    • 2013
  • Beam-to-column connections behaviour plays an important role in the analysis and design of steel and precast concrete structures. The paper presents a computer-based method for geometrically nonlinear frames with semi-rigid beam-to-column connections. The analytical procedure employs modified stability functions to model the effect of axial force on the stiffness of members. The member modified stiffness matrix, and the modified fixed end forces for various loads were found. The linear and nonlinear analyses were applied for two planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.

터널 설계시 지하수의 고려방안 (Groundwater Considerations in Tunnel Design)

  • 이인모;김용진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1993년도 봄 학술회 논문집
    • /
    • pp.1-8
    • /
    • 1993
  • This paper concerns the analytical concept of tunnel design for the case where the groundwater level remains almost to a standstill even though the steady state groundwater flow occurs through tunnel drainage systems. The effect of the seepage force is considered in analysis. Two case strudies are made : the one the round shape tunnel ; the other the horse shape. The design moments, shear forces and axial forces are calculated and these results are compared to the case of water proof tunnel design as well as the case of the tunnel design without groundwater consideration.

  • PDF

해양구조물 원통부재의 최종강도에 대한 손상의 영향 (Damage Effects on the Ultimate Strength of Offshore Tubular Members)

  • 백점기;신병천
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.577-577
    • /
    • 1989
  • In this paper, a detail evaluation of ultimate strength of offshore unstiffened tubular members with bending and local denting damage which are subjected to combined axial force and bending moment and to component load is presented through theoretical and experimental approaches. Based upon the results obtained here, the damage effect on the ultimate strength of tubular member under combined loads and component load is investigated.

해양구조물 원통부재의 최종강도에 대한 손상의 영향 (Damage Effects on the Ultimate Strength of Offshore Tubular Members)

  • 백점기;신병천
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.77-86
    • /
    • 1989
  • In this paper, a detail evaluation of ultimate strength of offshore unstiffened tubular members with bending and local denting damage which are subjected to combined axial force and bending moment and to component load is presented through theoretical and experimental approaches. Based upon the results obtained here, the damage effect on the ultimate strength of tubular member under combined loads and component load is investigated.

  • PDF

강사장교 거더와 주탑에 하중저항계수설계법의 보-기둥 상관식을 사용한 내하율 산정식 적용 (Application of Proposed Rating Equations using LRFD Beam-Column Interaction Equations for Girders and Towers in Steel Cable-Stayed Bridges)

  • 최동호;유훈;이범수;조선규
    • 한국강구조학회 논문집
    • /
    • 제19권1호
    • /
    • pp.1-13
    • /
    • 2007
  • 강사장교의 거더와 주탑은 축력과 모멘트를 동시에 받는 보-기둥 부재이기 때문에 단일 힘을 고려하는 일반도로교의 내하율 산정식은 강사장교의 거더와 주탑에 적용할 수 없다. 현재, 사장교의 거더와 주탑에 적용 가능한 이론적인 내하율 산정방법은 아직 정립되지 않았다. 본 논문에서는 축력과 모멘트를 동시에 받는 부재의 상관공식을 적용하여 강사장교 거더와 주탑의 내하율을 산정하기 위한 식을 제안하였다. 영향선해석을 수행하여 각 부재에 압축력 최대, 정 및 부모멘트 최대의 경우에 활하중 재하 형태를 결정하였고 각 부재의 내하율 산정절차를 정리하였다. 제안된 내하율 산정방법의 타당성을 검증하기 위하여 실교량 모델인 돌산대교에 대한 적용예를 제시하였다. 일반도로교의 내하율 산정식은 돌산대교 거더와 주탑의 내하율을 과대평가 하였으며, 제안된 내하율 산정식은 축력과 모멘트를 동시에 지지하는 사장교 거더와 주탑의 거동을 적절히 반영하였다.

Study on the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end constraints

  • Junli Lyu;Encong Zhu;Rukai Li;Bai Sun;Zili Wang
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.539-551
    • /
    • 2023
  • In order to study the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end restraints, temperature rise tests with constant load were conducted on full-scale castellated composite beams with ortho-hexagonal holes and hinge or rigid joint constraints to investigate the temperature distribution, displacement changes and failure patterns of castellated composite beams with two different beam-end constraints during the whole course of fire. The results show that (1) During the fire, the axial pressure and horizontal expansion deformation generated in the rigid joint constrained composite beam were larger than those in the hinge joint constrained castellated composite beam, and their maximum horizontal expansion displacements were 30.2 mm and 17.8 mm, respectively. (2) After the fire, the cracks on the slab surface of the castellated composite beam with rigid joint constraint were more complicated than hinge restraint, and the failure more serious; the lower flange and web at the ends of the castellated steal beams with hinge and rigid joint constraint produced serious local buckling, and the angles of the ortho-hexagonal holes at the support cracked; the welds at both ends of the castellated composite beam with rigid joint constraint cracked. (3) Based on the simplified calculation method of solid-web composite beam, considering the effect of holes on the web, this paper calculated the axial force and displacement of the beam-end constrained castellated composite beams under fire. The calculation results agreed well with the test results.