• Title/Summary/Keyword: avoidance of collision

Search Result 833, Processing Time 0.027 seconds

Design of an active RFID system for collision avoidance at MAC (충돌방지 매체접속 제어방식이 가능한 Active RFID 시스템 설계)

  • Jung, Sung-Jae;Ahn, Jun-Sick;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.181-183
    • /
    • 2007
  • 본 논문은 RF 리더기와 RF 태그 상호간의 통신시에 발생할 수 있는 충돌을 감지하고 이를 능동적으로 회피할수 있는 RFID(Radio Frequency IDentification)의 설계에 관한 내용이다. RFID는 사람, 자동차, 화물, 상품 등에 정보를 부가하는 시스템으로 그 부가정보를 무선통신매체를 이용하여 비접족으로 해독하는 시스템으로 기존의 바코드보다 데이터의 전송속도와 용량의 증가 그리고 편리성이 향상되는 장점이 있으나, 동시에 여러개의 RF태그와의 무선통신으로 인한 데이터의 충돌이 발생할 수 있다. 이러한 충돌을 감지하고 이를 적절하게 회피하는 것은 RFID 시스템의 신뢰성을 높이는데 필수적인 요소이다. RFID 태그로 사용되기 위해서는 건전지로 구동될 수 있도록 저전력소모가 요구되며 또한 통신의 시작과 충돌을 파악할 수 있는 캐리어 감지기능이 필수적이다. 본 논문에서는 이러한 조건들을 만족하는 Chipcon 사(社)의 양방향 RF IC를 사용하였다. Chipcon 사(社)의 양방향 RF IC는 다중 주파수 대역의 선택과 변조방식을 시리얼통신을 통해서 손쉽게 변경할 수 있기 때문에 충돌감지시 다양한 회피알고리즘을 상황에 맞게 구현할 수 있다. 본 논문에서는 양방향 RF IC를 사용하여 충돌을 감지하고 회피할 수 있는 RFID시스템을 설계하고 구현하였다.

  • PDF

A Study on the System for Controlling Factory Safety based on Unity 3D (Unity 3D 기반 깊이 영상을 활용한 공장 안전 제어 시스템에 대한 연구)

  • Jo, Seonghyeon;Jung, Inho;Ko, Dongbeom;Park, Jeongmin
    • Journal of Korea Game Society
    • /
    • v.20 no.3
    • /
    • pp.85-94
    • /
    • 2020
  • AI-based smart factory technologies are only increase short-term productivity. To solve this problem, collaborative intelligence combines human teamwork, creativity, AI speed, and accuracy to actively compensate for each other's shortcomings. However, current automation equipmens require high safety measures due to the high disaster intensity in the event of an accident. In this paper, we design and implement a factory safety control system that uses a depth camera to implement workers and facilities in the virtual world and to determine the safety of workers through simulation.

무인선 군집 자율운항 실해역 시험에 관한 연구

  • 손남선;이재용;표춘선;박한솔
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.184-185
    • /
    • 2022
  • 국제해사기구(IMO)에서는 2017년 미래선박으로서 자율운항선박(MASS)의 개념을 채택한 바 있으며, 실해역 운항을 위한 국제법규 및 규정 검토를 진행하고 있다. 무인선은 악천후시 유인선이 수행하기 힘든 임무를 대체하거나 지원하기 위하여 원격 혹은 자율적으로 운용되는 일종의 소형 자율운항선박을 의미한다. 선박해양플랜트연구소에서는 2011년부터 해양수산부 연구개발사업을 통하여, 무인선 아라곤호 시리즈를 개발하였으며, 아라곤1호, 2호, 3호 등 총 3척을 운용하고 있다. 해당 선박은 길이 8미터, 배수량 약 3톤급의 활주선형으로 원격운항, 경로추종 및 충돌회피 등 자율운항 기능이 적용되어 있다. 한편, 무인선은 공중 드론과 달리 탑재중량이 크고, 항속시간이 길어 해상에서 감시,첩보, 정찰 등에 효용성이 높으며, 최근 한척보다는 여러 척을 운용하는 것이 효과적이어서 무인선 군집(USV Swarm)으로 해상임무를 수행하려는 연구가 다양하게 진행되고 있다. 선박해양플랜트연구소에서는 2019년부터, 기존의 아라곤호 시리즈 무인선들을 활용하여, 무인선 군집 자율운항 시스템 개발을 위한 "인공지능 기반 무인선 상황인식 및 자율운항 기술 개발" 과제를 진행하고 있다. 해상에서 불법선박이 출현시 이를 효과적으로 단속하기 위하여 추적 기동이 필요한데, 본 연구에서는 무인선 3척을 활용하여 불법선박을 추적하는 해상 감시 실해역 시험을 수행하였다. 본 논문에서는 무인선 군집 자율운항 시스템에 대하여 소개하고, 무인선 군집을 활용한 불법선 추적에 관한 실해역 시험결과에 대해 소개한다.

  • PDF

Mutual Exclusion based Localization Technique in Mobile Wireless Sensor Networks (이동 무선 센서 네트워크에서 상호배제 기반 위치인식 기법)

  • Lee, Joa-Hyoung;Lim, Dong-Sun;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1493-1504
    • /
    • 2010
  • The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose LME, the localization technique for multiple mobile nodes in mobile wireless sensor networks. In LME, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use CTS packet type for localization initiation by mobile node and RTS packet type for localization grant by anchor node. NTS packet type is uevento reject localization by anchor node for interference avoidance.nghe experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and LME provides efficient localization.

Adaptive Power Control based Efficient Localization Technique in Mobile Wireless Sensor Networks (모바일 무선 센서 네트워크에서 적응적 파워 조절 기반 효율적인 위치인식 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.737-746
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose APL(Adaptive Power Control based Resource Allocation Technique for Efficient Localization Technique), the localization technique for multiple mobile nodes based on adaptive power control in mobile wireless sensor networks. In APL, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use RTS(Ready To Send) packet type for localization initiation by mobile node and CTS(Clear To Send) packet type for localization grant by anchor node. NTS(Not To Send) packet type is used to reject localization by anchor node for interference avoidance and STS(Start To Send) for synchronization between 모anchor nodes. At last, the power level of sensor node is controled adaptively to minimize the affected area. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and APL provides efficient localization.

Design of L-Band-Phased Array Radar System for Space Situational Awareness (우주감시를 위한 L-Band 위상배열레이다 시스템 설계)

  • Lee, Jonghyun;Choi, Eun Jung;Moon, Hyun-Wook;Park, Joontae;Cho, Sungki;Park, Jang Hyun;Jo, Jung Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.214-224
    • /
    • 2018
  • Continuous space development increases the occurrence probability of space hazards such as collapse of a satellite and collision between a satellite and space debris. In Korea, a space surveillance network with optical system has been developed; however, the radar technology for an independent space surveillance needs to be secured. Herein, an L-band phased array radar system for the detection and tracking of space objects is proposed to provide a number of services including collision avoidance and the prediction of re-entry events. With the mission analysis of space surveillance and the case analysis of foreign advanced radar systems, the radar parameters are defined and designed. The proposed radar system is able to detect a debris having a diameter of 10 cm at a maximum distance of 1,576 km. In addition, we confirmed the possibility of using the space surveillance mission for domestic satellites through the analysis of the detection area.

Vehicle-to-Vehicle Broadcast Protocols Based on Wireless Multi-hop Communication (무선 멀티 홉 통신 기반의 차량간 브로드캐스트 프로토콜)

  • Han, Yong-Hyun;Lee, Hyuk-Joon;Choi, Yong-Hoon;Chung, Young-Uk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.53-64
    • /
    • 2009
  • Inter-vehicular communication that propagates information without infrastructures has drawn a lot of interest. However, it is difficult to apply conventional ad-hoc routing protocols directly in inter-vehicular communication due to frequent changes in the network topology caused by high mobility of the vehicles. MMFP(Multi-hop MAC Forwarding) is a unicast forwarding protocol that transport packets based on the reachability information instead of path selection or position information. However, delivering public safety messages informing road conditions such as collision, obstacles and fog through inter-vehicular communication requires broadcast rather than unicast since these messages contain information valuable to most drivers within a close proximity. Flooding is one of the simplest methods for multi-hop broadcast, but it suffers from reduced packet delivery-ratio and high transmission delay due to an excessive number of duplicated packets. This paper presents two multi-hop broadcast protocols for inter-vehicular communication that extend the MMFP. UMHB(Unreliable Multi-Hop Broadcast) mitigates the duplicated packets of MMFP by limiting the number of nodes to rebroadcast packets. UMHB, however, still suffers from low delivery ratio. RMHB(Reliable Multi-Hop Broadcast) uses acknowledgement and retransmission in order to improve the reliability of UMHB at the cost of increase in transmission delay, which we show through simulation is within an acceptable range for collision avoidance application.

  • PDF

A Study of Model-Based Aircraft Safety Assessment (모델기반 항공기 안전성평가에 관한 연구)

  • Kim, Ju-young;Lee, Dong-Min;Lee, Byoung-Gil;Gil, Gi-Nam;Kim, Kyung-Nam;Na, Jong-Whoa
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.24-32
    • /
    • 2021
  • Personal Air Vehicle (PAV), Cargo UAS (Cargo UAS), and existing manned and unmanned aircraft are key vehicles for urban air mobility (UAM), and should demonstrate compatibility for the design of aircraft systems. The safety assessment required by for certification to ensure safety and reliability should be systematically performed throughout the entire cycle from the beginning of the aircraft development process. However, with the increasing complexity of safety critical aviation systems and the application of state-of-the-art systems, conventional experience-based and procedural-based safety evaluation methods make ir difficult to objectively assess safety requirements and system safety. Therefore, Model-Based Safety Assessment (MBSA) using modeling and simulation techniques is actively being studied at domestic and foreign countries to address these problems. In this paper, we propose a Model-Based Safety Evaluation framework utilizing modeling and simulation-based integrated flight simulators. Our case studies on the Traffic Collision Availability System (TCAS) and Wheel Brake System (WBS) confirmed that they are practical for future safety assessments.

Conjunction Assessments of the Satellites Transported by KSLV-II and Preparation of the Countermeasure for Possible Events in Timeline (누리호 탑재 위성들의 충돌위험의 예측 및 향후 상황의 대응을 위한 분석)

  • Shawn Seunghwan Choi;Peter Joonghyung Ryu;John Kim;Lowell Kim;Chris Sheen;Yongil Kim;Jaejin Lee;Sunghwan Choi;Jae Wook Song;Hae-Dong Kim;Misoon Mah;Douglas Deok-Soo Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.118-143
    • /
    • 2023
  • Space is becoming more commercialized. Despite of its delayed start-up, space activities in Korea are attracting more nation-wide supports from both investors and government. May 25, 2023, KSLV II, also called Nuri, successfully transported, and inserted seven satellites to a sun-synchronous orbit of 550 km altitude. However, Starlink has over 4,000 satellites around this altitude for its commercial activities. Hence, it is necessary for us to constantly monitor the collision risks of these satellites against resident space objects including Starlink. Here we report a quantitative research output regarding the conjunctions, particularly between the Nuri satellites and Starlink. Our calculation shows that, on average, three times everyday, the Nuri satellites encounter Starlink within 1 km distance with the probability of collision higher than 1.0E-5. A comparative study with KOMPSAT-5, also called Arirang-5, shows that its distance of closest approach distribution significantly differs from those of Nuri satellites. We also report a quantitative analysis of collision-avoiding maneuver cost of Starlink satellites and a strategy for Korea, being a delayed starter, to speed up to position itself in the space leading countries. We used the AstroOne program for analyses and compared its output with that of Socrates Plus of Celestrak. The two line element data was used for computation.

Dynamic Resource Reservation for Ultra-low Latency IoT Air-Interface Slice

  • Sun, Guolin;Wang, Guohui;Addo, Prince Clement;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3309-3328
    • /
    • 2017
  • The application of Internet of Things (IoT) in the next generation cellular networks imposes a new characteristic on the data traffic, where a massive number of small packets need to be transmitted. In addition, some emerging IoT-based emergency services require a real-time data delivery within a few milliseconds, referring to as ultra-low latency transmission. However, current techniques cannot provide such a low latency in combination with a mice-flow traffic. In this paper, we propose a dynamic resource reservation schema based on an air-interface slicing scheme in the context of a massive number of sensors with emergency flows. The proposed schema can achieve an air-interface latency of a few milliseconds by means of allowing emergency flows to be transported through a dedicated radio connection with guaranteed network resources. In order to schedule the delay-sensitive flows immediately, dynamic resource updating, silence-probability based collision avoidance, and window-based re-transmission are introduced to combine with the frame-slotted Aloha protocol. To evaluate performance of the proposed schema, a probabilistic model is provided to derive the analytical results, which are compared with the numerical results from Monte-Carlo simulations.