• Title/Summary/Keyword: averaged flat

Search Result 76, Processing Time 0.021 seconds

A Refinement of WAsP Prediction in a Complex Terrain (복잡지형에서의 WAsP 예측성 향상 연구)

  • Kyong, Nam-Ho;Yoon, Jeong-Eun;Jang, Moon-Seok;Jang, Dong-Soon;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2003
  • The comparative performance of the WAsP in calculating the wind climate in complex terrain has been examined in order to test the predictability of the wind resource assessment computer code in our country. An analysis was carried out of predicted and experimental 10-min averaged wind data collected over 8 months at four monitoring sites in SongDang province, Jeju island, composed of sea, inland flat terrain, a high and a low slope craters. The comparisons show that the WAsP preditions give better agreement with experimental data by adjusting the roughness descriptions, the obstacle list.

Control of the Unsteadiness of Supersonic Cavity Flows (불안정한 초음속 공동유동의 제어)

  • Kang, Min-Sung;Shin, Choon-Sik;Kwon, Joon-Kyeong;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2782-2787
    • /
    • 2008
  • The subcavity passive control technique is used in present study. Cavity-induced pressure oscillation has been investigated numerically for a supersonic three-dimensional flow over rectangular cavities at Mach number 1.83 at the cavity entrance. Time dependent supersonic turbulent flow over cavity were examined by using the three-dimensional, mass-averaged Navier-Stokes equations based on a finite volume scheme and large eddy simulation. The results showed that the resultant amount of attenuation of cavity-induced pressure oscillations was dependent on the length and thickness of the flat plate.

  • PDF

The Effects of Mean-Line Shape on Longitudinal Stablility of a Wing in Ground Effect

  • Kim, Wu-Joan;Shin, Myung-Soo
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1996
  • The Reynolds-averaged Navier-Stokes equations for turbulent flow around a two-dimensional foil section moving ova. a flat surface (roller plate) is solved. The numerical method utilized the finite-difference schemes in collocated grids and the Baldwin-Lomax model is employed for turbulence closure. Calculations are carried out for three foil sections of different mean-line shape with various height ratio. As a foil approaches the bottom surface, the lift is augmented, while there exist some differences in pitching moment due to mean-line shape. It was found that the S-shaped mean line deteriorates lift characteristics but increases pitching moment to restore the designed height.

  • PDF

Probabilistic analysis of Italian extreme winds : Reference velocity and return criterion

  • Ballio, G.;Lagomarsino, S.;Piccardo, G.;Solari, G.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.51-68
    • /
    • 1999
  • Applying and extending some preceding researches, this paper proposes a map of Italian extreme winds assigning the reference velocity, i.e., the wind velocity averaged over 10 minutes, at 10 m height, in a flat open terrain, with 50 years mean return period, depending on the site and the altitude. Furthermore, an objective criterion is formulated by which the actual values of the local wind velocity are given as a function of the reference velocity. The study has been carried out in view of the revision of the Italian Standards dealing with safety and loads and the introduction of the aeolic Italian map into Eurocode 1.

Growth environment characteristics of the habitat of Epilobium hirsutum L., a class II endangered wildlife species

  • Kwang Jin Cho;Hyeong Cheol Lee;Sang Uk Han;Hae Seon Shin;Pyoung Beom Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.282-289
    • /
    • 2023
  • Background: As wildlife habitats are being destroyed and growth environments are changing, the survival of animals and plants is under threat. Epilobium hirsutum L., a species that inhabits wetlands, has held legally protected status since 2012. However, no specific measures are currently in place to protect its habitat, leading to a decline in remaining populations as a result of land use change and human activities. Results: The growth environment (including location, climate, land use, soil, and vegetation) of the five habitat sites (Samcheok, Taebaek1, Taebaek2, Cheongsong, Ulleung) of E. hirsutum L. was investigated and analyzed. These habitats were predominantly situated in flat areas with gentle south-facing slopes, at an average altitude of 452.7 m (8-726 m) above sea level in Gangwon-do and Gyeongsangbuk-do. The average annual temperature ranged 11.5℃ (9.2℃-12.9℃), whereas the average annual precipitation ranged 1,304.5 mm (1,062.7-1,590.7 mm). The surrounding land use status was mainly characterized by mountainous areas, and human interference, such as agricultural land and roads, was commonly found in proximity to these natural habitats. Soil physicochemical analysis revealed that the soil was predominantly sandy loam with a slightly high sand content. The average pH measured 7.64, indicating an alkaline environment, and electrical conductivity (EC) averaged 0.33 dS/m. Organic matter (OM) content averaged 66.44 g/kg, available phosphoric acid (P2O5) content averaged 115.73 mg/kg, and cation exchange capacity (CEC) averaged 23.43 cmolc/kg. The exchangeable cations ranged 0.09-0.43 cmol+/kg for potassium (K), 10.23-16.21 cmol+/kg for calcium (Ca), 0.67-4.94 cmol+/kg for magnesium (Mg), and 0.05-0.74 cmol+/kg for sodium (Na). The vegetation type was categorized as E. hirsutum community with high numbers of E. hirsutum L., Persicaria thunbergii (Siebold & Zucc.) H. Gross, Phragmites japonica Steud., Humulus japonicus (Siebold & Zucc.), and Bidens frondosa L.. An ecological flora analysis, including the proportion of lianas, naturalized plants, and annual herbaceous plants, revealed that the native habitat of E. hirsutum L. was ecologically unstable. Conclusions: Analysis of the habitat of E. hirsutum L., a class II endangered wildlife species, provided essential data for local conservation and restoration efforts.

Analysis of Plantar Pressure Differences between Flat Insole Trekking Shoes and Nestfit Trekking Shoes (네스핏 트레킹화와 평면 인솔 트레킹화의 족저압력 분석)

  • Choi, Jae-Won;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.475-482
    • /
    • 2015
  • Objective : The purpose of this study was to investigate mean plantar foot pressure, maximum plantar pressure and ground reaction force, and center migration path of pressure according to the type of trekking shoes for the development of shoes. Method : Subjects of the study averaged $22.10{\pm}2.05years$ of age. Their average height was $169.27{\pm}7.62cm$ and their average weight was $64.34{\pm}10.22kg$. The method of this study was administered measuring 50 steps, at once, 3 times at a speed of 4 km/h and using the data of 30 steps. Pedar-X system measured the mean foot pressure, maximum foot pressure, mean maximum force, and center migration path of pressure by subjects' position while walking. Statistical analysis was performed by SPSS 23.0 using a paired t-test. Results : Results of the study showed Nestfit trekking shoes lower foot pressure of both feet in mean foot pressure and maximum foot pressure. Nestfit trekking shoes showed high ground reaction force (p<.001) in the midfoot, and low mean ground reaction force in the rearfoot. The center migration path of pressure showed the Nestfit trekking shoes were more stable than flat insole trekking shoes. Conclusion : It can be concluded that wearing Nestfit trekking shoes spreads pressure efficiently and induces walking stability because Nestfit trekking shoes spread the pressure of the forefoot and rearfoot to the midfoot and the center migration path of pressure shows regularly.

A Study on the Wind Pressure Coefficients of Flat-type Apartment Complexes Considering Building Layout and Aspect Ratio (판상형 공동주택의 동 배치 및 종횡비에 따른 풍압계수 특성에 관한 연구)

  • Yoon, Seong-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.153-159
    • /
    • 2021
  • In this study, basic data that can be referenced for ventilation modeling was presented by analyzing the characteristics of wind pressure coefficients(Cp) according to wind direction angles under conditions of different building layouts and aspect ratios through CFD (Computational Fluid Dynamics) analysis for flat-type apartment complexes. In the case of a wind direction angle of 0°, Cp distribution in the form of an inverted S-shape was shown on the front of the building located on the windward side. And Cp corresponding to the lowest floor, the uppermost floor, and the two inflection points showed relatively close values regardless of the height of the building. The inflection point of the low-rise part was formed at a height of about 11m, and the height of the high-rise part could be calculated through a trend formula proportional to the height of the building. It was confirmed that the averaged Cp value can be applied in most conditions except for the wind direction angle of 45 degrees.

CFD Simulation on Predicting POW Performance Adopting Laminar-Turbulent Transient Model (층류-난류 천이 모델을 적용한 프로펠러 단독 성능 해석에 관한 CFD 시뮬레이션)

  • Kim, Dong-Hyun;Jeon, Gyu-Mok;Park, Jong-Chun;Shin, Myung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In the present study, the model-scale Propeller Open Water (POW) tests for the propeller of 176K bulk carrier and 8600TEU container ship were conducted through Computational Fluid Dynamics (CFD) simulation. In order to solve the incompressible viscous flow field, the Reynolds-averaged Navier-Stokes (RaNS) equations were employed as the governing equations. The γ-Reθ(gamma-Re-theta) transition model combined with the SST k-ωturbulence model was introduced to describe the laminar-turbulence transition considering the low Reynolds number of model-scale. Firstly, the flow simulation developing over a flat plate was performed to verify the transition modeling, in which the wall shear stresses were compared with experiments and other numerical results. Then, to investigate the effect of the model, the CFD simulation for the POW test was performed and the simulated propeller performance was validated through comparison with the experiment conducted at Korea Research Institute of Ships & Ocean Engineering (KRISO).

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu;Yingchao, Zhang;Zhengwei, Chen;Rui, Li;Huadong, Yao
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.405-418
    • /
    • 2022
  • The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

Effect of Hole Shapes, Orientation And Hole Arrangements On Film Cooling Effectiveness

  • Jindal, Prakhar;Roy, A.K.;Sharma, R.P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.341-351
    • /
    • 2016
  • In this present work, the effect of hole shapes, orientation and hole arrangements on film cooling effectiveness has been carried out. For this work a flat plate has been considered for the computational model. Computational analysis of film cooling effectiveness using different hole shapes with no streamwise inclination has been carried out. Initially, the model with an inclination of $30^{\circ}$ has been verified with the experimental data. The validation results are well in agreement with the results taken from literature. Five different hole shapes viz. Cylindrical, Elliptic, Triangular, Semi-Cylindrical and Semi-Elliptic have been compared and validated over a wide range of blowing ratios. The blowing ratios ranged from 0.67 to 1.67. Later, orientation of holes have also been varied along with the number of rows and hole arrangements in rows. The performance of film cooling scheme has been given in terms of centerline and laterally averaged adiabatic effectiveness. Semi-elliptic hole utilizes half of the mass flow as in other hole shapes and gives nominal values of effectiveness. The triangular hole geometry shows higher values of effectiveness than other hole geometries. But when compared on the basis of effectiveness and coolant mass consumption, Semi-elliptic hole came out to give best results.