• Title/Summary/Keyword: average bit error rate

Search Result 205, Processing Time 0.025 seconds

Performance Improvement of Asynchronous Mass Memory Module Using Error Correction Code (에러 보정 코드를 이용한 비동기용 대용량 메모리 모듈의 성능 향상)

  • Ahn, Jae Hyun;Yang, Oh;Yeon, Jun Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.112-117
    • /
    • 2020
  • NAND flash memory is a non-volatile memory that retains stored data even without power supply. Internal memory used as a data storage device and solid-state drive (SSD) is used in portable devices such as smartphones and digital cameras. However, NAND flash memory carries the risk of electric shock, which can cause errors during read/write operations, so use error correction codes to ensure reliability. It efficiently recovers bad block information, which is a defect in NAND flash memory. BBT (Bad Block Table) is configured to manage data to increase stability, and as a result of experimenting with the error correction code algorithm, the bit error rate per page unit of 4Mbytes memory was on average 0ppm, and 100ppm without error correction code. Through the error correction code algorithm, data stability and reliability can be improved.

Bit Error Rate Improvement Scheme for Transmitted Reference UWB Systems (Transmitted Reference UWB 시스템을 위한 비트오율 향상 기법)

  • Kim, Jae-Woon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.540-547
    • /
    • 2009
  • In this paper, we propose a transceiver structure that can effectively improve BER(Bit Error Rate) performance for TR-UWB (Transmitted Reference Ultra Wide Band) systems based on impulse radio. Unlike coherent UWB systems that are too complex for practical implementation while having good BER performances, the complexity of the TR-UWB systems is quite low since they transmit data with the corresponding reference signals and demodulate the data through correlation using these received signals. However, the BER performance in the conventional TR-UWB systems is affected by SNR (Signal-to-Noise Ratio) of the reference templates used in the correlator. To this end, we propose a receiver structure that can effectively improve the BER performance by increasing the SNR of reference templates. Simulation results reveal that the proposed scheme achieves significant BER improvement as compared to the conventional TR-UWB systems.

Performance Analysis of Hybrid Concatenated Convolutional Codes over AWGN and Rayleigh/Rician Fading Channels (가산성 백색 가우시안 잡음과 레일레이/라이시안 페이딩 채널에서 하이브리드 연쇄 길쌈부호의 성능 분석)

  • 김세훈;윤원식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.43-47
    • /
    • 2000
  • In regions of low signal-to-noise ratio (SNR), performance analysis uses simulations of hybrid concatenated coding systems. However, for higher SNR regions beyond simulation capabilities, average upper bounds to bit error rate (BER) and word error rate (WER) are used. In [1], all weight enumerating functions are needed to obtain average bounds. In this paper, we use RSC as constituent codes, by using effective free distances instead of WEF, we derive average BER and WER bounds of hybrid concatenated convolutional codes (HCCC) and analyze the BER and WER over AWGN and Rayleigh/Rician fading channels.

  • PDF

Compensation for Nonlinear Distortion in OFDM Systems Using a Digital Predistorter Based on the Canonical PWL Model (Canonical PWL 모델 기반의 디지털 사전왜곡기를 이용한 OFDM 시스템의 비선형 왜곡 보상)

  • Seo, Man-Jung;Shim, Hee-Sung;Im, Sung-Bin;Jung, Jae-Ho;Lee, Kwang-Chun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.65-76
    • /
    • 2010
  • Orthogonal frequency division multiplexing (OFDM) is an attractive technique for achieving high-bit-rate wireless data transmission. However, multicarrier systems such as OFDM show great sensitivity to nonlinear distortion. The OFDM structure requires a summation of a large number of subcarriers for multicarrier modulation, and as a result of this summation large signal envelope fluctuations occur. These fluctuations make OFDM systems to be very sensitive to nonlinear distortion introduced by the high power amplifier (HPA) at the transmitter. In this paper, we propose a canonical piecewise-linear (CPWL) model based digital predistorter to compensate for nonlinear distortion introduced by the high peak-to-average power ratio (PAPR) and the HPA in OFDM systems. The performance of the new predistortion scheme for OFDM systems is evaluated in terms of total degradation (TD) and bit error rate (BER). The simulation results demonstrated that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinear distortion introduced by the HPA.

Generalized BER Performance Analysis for Uniform M-PSK with I/Q Phase Unbalance (I/Q 위상 불균형을 고려한 Uniform M-PSK의 일반화된 BER 성능 분석)

  • Lee Jae-Yoon;Yoon Dong-Weon;Hyun Kwang-Min;Park Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3C
    • /
    • pp.237-244
    • /
    • 2006
  • I/Q phase unbalance caused by non-ideal circuit components is inevitable physical phenomenons and leads to performance degradation when we implement a practical coherent M-ary phase shift keying(M-PSK) demodulator. In this paper, we present an exact and general expression involving two-dimensional Gaussian Q-functions for the bit error rate(BER) of uniform M-PSK with I/Q phase unbalance over an additive white Gaussian noise(AWGN) channel. First we derive a BER expression for the k-th bit of 8, 16-PSK signal constellations when Gray code bit mapping is employed. Then, from the derived k-th bit BER expression, we present the exact and general average BER expression for M-PSK with I/Q phase unbalance. This result can readily be applied to numerical evaluation for various cases of practical interest in an I/Q unbalanced M-PSK system, because the one- and two-dimensional Gaussian Q-functions can be easily and directly computed using commonly available mathematical software tools.

Performance and Energy Consumption Analysis of 802.11 with FEC Codes over Wireless Sensor Networks

  • Ahn, Jong-Suk;Yoon, Jong-Hyuk;Lee, Kang-Woo
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.265-273
    • /
    • 2007
  • This paper expands an analytical performance model of 802.11 to accurately estimate throughput and energy demand of 802.11-based wireless sensor network (WSN) when sensor nodes employ Reed-Solomon (RS) codes, one of block forward error correction (FEC) techniques. This model evaluates these two metrics as a function of the channel bit error rate (BER) and the RS symbol size. Since the basic recovery unit of RS codes is a symbol not a bit, the symbol size affects the WSN performance even if each packet carries the same amount of FEC check bits. The larger size is more effective to recover long-lasting error bursts although it increases the computational complexity of encoding and decoding RS codes. For applying the extended model to WSNs, this paper collects traffic traces from a WSN consisting of two TIP50CM sensor nodes and measures its energy consumption for processing RS codes. Based on traces, it approximates WSN channels with Gilbert models. The computational analyses confirm that the adoption of RS codes in 802.11 significantly improves its throughput and energy efficiency of WSNs with a high BER. They also predict that the choice of an appropriate RS symbol size causes a lot of difference in throughput and power waste over short-term durations while the symbol size rarely affects the long-term average of these metrics.

Optimal Relay Selection and Power Allocation in an Improved Low-Order-Bit Quantize-and-Forward Scheme

  • Bao, Jianrong;He, Dan;Xu, Xiaorong;Jiang, Bin;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5381-5399
    • /
    • 2016
  • Currently, the quantize-and-forward (QF) scheme with high order modulation and quantization has rather high complexity and it is thus impractical, especially in multiple relay cooperative communications. To overcome these deficiencies, an improved low complex QF scheme is proposed by the combination of the low order binary phase shift keying (BPSK) modulation and the 1-bit and 2-bit quantization, respectively. In this scheme, the relay selection is optimized by the best relay position for best bit-error-rate (BER) performance, where the relays are located closely to the destination node. In addition, an optimal power allocation is also suggested on a total power constraint. Finally, the BER and the achievable rate of the low order 1-bit, 2-bit and 3-bit QF schemes are simulated and analyzed. Simulation results indicate that the 3-bit QF scheme has about 1.8~5 dB, 4.5~7.5 dB and 1~2.5 dB performance gains than those of the decode-and-forward (DF), the 1-bit and 2-bit QF schemes, at BER of $10^{-2}$, respectively. For the 2-bit QF, the scheme of the normalized Source-Relay (S-R) distance with 0.9 has about 5dB, 7.5dB, 9dB and 15dB gains than those of the distance with 0.7, 0.5, 0.3 and 0.1, respectively, at BER of $10^{-3}$. In addition, the proposed optimal power allocation saves about 2.5dB much more relay power on an average than that of the fixed power allocation. Therefore, the proposed QF scheme can obtain excellent features, such as good BER performance, low complexity and high power efficiency, which make it much pragmatic in the future cooperative communications.

Performance Comparison of CDMA and TDMA protocols in radio access system for Integrated Voice/Data Services (음성 및 데이터서비스를 위한 무선접속시스템에서 CDMA와 TDMA방식의 성능비교)

  • 고종하;양영님;이정규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6A
    • /
    • pp.820-831
    • /
    • 1999
  • In this paper, we have compared the performance of a D-TDMA protocol with that of a CDMA protocol, in radio access system for integrated voice/data services.The D-TDMA protocol is based on a generic dynamic channel assignment approach to be followed a combination of “circuit mode” reservation for voice calls, along with dynamic first-come-first served assignment of remaining capacity for data messages. In the CDMA protocol, we have used the voice activity detection to reduce the interface power of other mobiles in internal and external cells, and analyzed the interference power ratio. Also we have computed BER(Bit Error Rate) by using this interference power ratio and evaluated voice blocking probability(voice packet loss probability) and data transmission delay, according to average data length and average data arrival rate.We have found the CDMA protocol achieves comparatively higher performance for short data length, regardless of data arrival rate. Otherwise, the data transmission delay of D-TDMA protocol is shorter than that of the CDMA protocol for long data message.

  • PDF

An Overview of Peak-to-Average Power Ratio Reduction Schemes for OFDM Signals

  • Lim, Dae-Woon;Heo, Seok-Joong;No, Jong-Seon
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • Orthogonal frequency division multiplexing (OFDM) has been adopted as a standard for various high data rate wireless communication systems due to the spectral bandwidth efficiency, robustness to frequency selective fading channels, etc. However, implementation of the OFDM system entails several difficulties. One of the major drawbacks is the high peak-to-average power ratio (PAPR), which results in intercarrier interference, high out-of-band radiation, and bit error rate performance degradation, mainly due to the nonlinearity of the high power amplifier. This paper reviews the conventional PAPR reduction schemes and their modifications for achieving the low computational complexity required for practical implementation in wireless communication systems.

Polar Code Design for Nakagami-m Channel

  • Guo, Rui;Wu, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3156-3167
    • /
    • 2020
  • One drawback of polar codes is that they are not universal, that is, to achieve optimal performance, different polar codes are required for different kinds of channel. This paper proposes a polar code construction scheme for Nakagami-m fading channel. The scheme fully considers the characteristics of Nakagami-m fading channel, and uses the optimized Bhattacharyya parameter bounds. The constructed code is applied to an orthogonal frequency division multiplexing (OFDM) system over Nakagami-m fading channel to prove the performance of polar code. Simulation result shows the proposed codes can get excellent bit error rate (BER) performance with successive cancellation list (SCL) decoding. For example, the designed polar code with cyclic redundancy check (CRC) aided SCL (L = 8) decoding achieves 1.1dB of gain over LDPC at average BER about 10-5 under 4-quadrature amplitude modulation (4QAM) while the code length is 1024, rate is 0.5.